Power ful Power Point
for Educators. Using
Visual Basic for
Applicationsto Make
Power Point I nteractive

David M. Marcovitz

LIBRARIESUNLIMITED

Powerful PowerPoint
for Educators

Using Visual Basic for Applications to Make
PowerPoint Interactive

David M. Marcovitz

LIBRARIES

UNLIMITETD

Westport, Connecticut * London

Library of Congress Cataloging-in-Publication Data

Marcovitz, David M.

Powerful PowerPoint for educators : using Visual Basic for applications to make

PowerPoint interactive / by David M. Marcovitz
p. cm.

ISBN: 1-59158-095-1 (alk. paper)

1. Computer graphics. 2. Microsoft PowerPoint (Computer file) 3. Business
presentations—Graphic methods—Computer programs. 4. Microsoft Visual Basic for
applications. L. Title.

T385.M36345 2004
006.6'8682—dc22 2003067183

British Library Cataloguing in Publication Data is available.
Copyright © 2004 by David M. Marcovitz

All rights reserved. No portion of this book may be
reproduced, by any process or technique, without the
express written consent of the publisher.

Library of Congress Catalog Card Number: 2003067183
ISBN: 1-59158-095-1

First published in 2004

Libraries Unlimited, 88 Post Road West, Westport, CT 06881
A Member of the Greenwood Publishing Group, Inc.
www.lu.com

Printed in the United States of America

&

The paper used in this book complies with the
Permanent Paper Standard issued by the National
Information Standards Organization (Z39.48-1984).

109 87 6 5 4 3 21

All terms mentioned in this book that are known as trademarks or service marks have
been appropriately capitalized. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

The publisher and the author of this book have no connection to Microsoft.

The author maintains a site of supplemental information, including bibliographical up-
dates and further readings. This site is available through Libraries Unlimited site at
www.lu.com.

For the three ladies in my life:
Emily, Ella, and Ada

Contents

Listof Figures. xi
Preface XV
Chapter 1: MultimediaDesign 1
Introduction 1
Vocabulary. 1
What Is Multimedia? 2
The Design Process i 3
Project Organizationiuiuineniiininnanan... 5
Metaphors 7
Storyboards and Flowcharts. 7
Designing Assignments for Your Students. 8
ConcluSION. . ..ot 10
Chapter 2: Traditional Multimedia Features of PowerPoint 13
Introductiont 13
Vocabulary. 13
Before YouBegin 14
Inserting Picturesot 15
SouUNds . ..o 18
Linking and Embedding Sounds 20
Are My Sounds Linked or Embedded?. 21
Hypertext Links 21
BUttons. . ..o 25
Text for Buttons. 27
Sound for Buttons 28
Controlling Navigation with KioskMode 29
Saving AsaPowerPointShow 30
ConcluSION. . ..ot 31
Exercises to Try. ...t 32
Chapter 3: Introducing Visual Basic for Applications. 33
Introduction 33
Vocabulary. 33
What Is Visual Basic for Applications? 34
What Is an Object-Oriented Programming Language? 35
VBA and Viruses.o ottt 37
ConcluSION. .« oottt 39

viii Contents

Chapter 4: Getting Started with VBA 41
Introduction 41
Vocabulary. 41
Accessingthe VBA Editor. 41
Help!'veLostMy Windows. 43
Tying Your VBA Scriptto a PowerPoint Button 43
Tying Your VBA Scriptto AnyObject. 45
ChangingaButton. 46
Securing Your VBA Script from PryingEyes. 47
CoNCIUSION . . . oot 48
Exercises to Tryo 48

Chapter 5: Let’s Get Scripting 49
Introduction 49
Vocabulary. 49
Variables and Getting Input. 50
Variable Declarations. i 51
Variable Types.ot 53
Force the Student to Type Something 55
What Else? A Personal Response and a Short-Answer Question 57
Running Your Scriptst 59
Calling a Procedure from Another Procedure. 59
ConcluSION. . ..ot 61
Exercises to Try 61

Chapter 6: A Scripting Bag of Tricks 63
Introduction 63
Vocabulary. 63
COMMENLS . . .ottt e e e e e e e 64
Navigation: Moving from SlidetoSlide. 64
The Secrets of the MSgBOX . . . oot ii i e i 66
Hiding and Showing PowerPoint Objects. 68
Let’s Get Started: Initializing Your Presentation 69
Referencing Objects by Number 71
Referencing Objectsby Name 73
This Slide or AnotherSlide. 74
Adding PowerPoint Objects. i 75
Putting the Student’s InputintoaBox. 77
Manipulating Textin Objects, 79
Manipulating Text: The Mystery Example. 85
CoNCIUSION . . . oot 89

Exercises to Tryovoi 89

Contents ix

Chapter 7: Quizzesand Tests. 91
Introduction 91
Vocabulary. 91
Simple Multiple-Choice Testsco ... 92
Keeping Scoreo 93
Try Again: Answer Until It’sRight 95
Try Again and Again: Answer Again After I’sRight. 96
Short-Answer Quiz QuUestionsSttt 99
Do Spelling and Spacing Count? 100
How Did You Do: Reporting Results to the Teacher. 102
Learn First, Ask Questions Later: The Tutorialand Quiz 109
ConClUSION . .« v vt 115
Exercises to Try.ot e 116

Chapter 8: More Tricks for Your ScriptingBag 117
Introduction 117
Vocabulary. 117
Conditionals: The If Statement 118
Looping . ..ot 120
Parameters 124
Timed Functions i 125
Saving and Quitting.ot 127
What’s in a Name? Finding and Changing Object and Slide Names . . . 130
ATTAYS ot 134
I Don’t Know How Many Questions: ReDimto the Rescue 136
Which Button DidIPress? 138
Random Numbers i 143
Choose Questions Randomly fromaPool 146
ConcluSion. . .. oottt 150
Exercisesto Tryo 151

Chapter 9: Debugging Tips. 153
Introduction 153
Vocabulary. 153
My Scripts Always Work the First Time. 153
Testing for Bugs. 154
NoNewsIsBadNews i, 155
The ErrorinRed 155
I’m Not Seeing Red, ButI’'m SeeingRed 158
Commenting OUtttt e 160
Compiling YourCode 161
Debugger 162
An Ounce of Prevention 162

Hints fromthe VBAEditor. 166

x Contents

Chapter 9: Debugging Tips (cont.)

VBAHelp ... 168
Common Bugs. i 168
Final Word on Debugging and Error Prevention. 170
ConcluSION. . .o vt 170
Exercises to Tryo 171
Chapter 10: Templates, 173
Introductiono 173
Vocabulary. 173
What Are Templates? i 173
Saving Your Template. 175
The Pick-A-Partner Template Project 176
ConcluSION. .« v v 183
Exercises to Try.ot 183
Epilogue. 185
References 187

Index ... e 189

List of Figures

1.1 Linear Organization.uu ittt 5
1.2 Menu Organizationuuuentmn e, 6
2.1 No Check Next to “Allow fastsaves” 14
2.2 Choosing Insert Picture From File from the Menu 16
2.3 Insert Clip Art in PowerPoint 2002 17
24 RightClickthe Mouse. 18
2.5 Flyout Menu to Copy a Picture from a Browser 19
2.6 Record Sound Dialog Box. i 19
2. 7Insert Hyperlink. 22
2.8 Insert Hyperlink Dialog in PowerPoint 2001 23
2.9 Insert Hyperlink Dialog in PowerPoint 2002 23
2.10 The Twelve Typesof Buttons 25
2.11 Action Settings foraButton, 26
2.12 Button with Action Settings for the Text. 28
2.13 Selecting Kiosk Mode i 30
2.14 Saving a File As a PowerPoint Show 31
2.15 Slides for Tutorial withMenu 32
3.1 Do You Want to Enable Macros? 38
3.2 Security Tab Under Options 38
3.3 Macro Security Dialog Box. o 39
3.4 Example Chart of the Parts of a PowerPoint Presentation. 40
41 Insert Modulel. 42
4.2 MsgBox Says “Hello” 42
4.3 Project Window with Modulel 43

4.4 Getting a Blank Action Button 44

xii List of Figures

4.5 Action Settings Dialog Box. 45
4.6 Setting a Password. 47
4.7 Slides for a Simple Quiz in the Chapter 4 Exercise. 48
5.1 ABox CalleduserName.oitininiin it 52
5.2 Variable Type Pop-UpBox i 53
53SIimple QUIZ. ..o oot 55
54 Ask Forand RequireaName. 56
5.5 YourNameWithPraise Calls YourName and DoingWell 60
6.1 MsgBox with Yesand No Buttons. 67
6.2 Simple Quiz Showing Stars for Correct Answers 70
6.3 Custom Animation to Find Shape Numbers 71
6.4 Finding the Object Number in PowerPoint 2002. 72
6.5 Shapes on a Slide, with Names in Quotations Below 73
6.6 Signs of Spring Discussion Slide—Before and After 82
6.7 The Mystery Presentation Slides 86
6.8 The Mystery Presentation VBA Code 87
7.1 Multiple-Choice Test with Scorekeeping 93
7.2 Question Slide with Next and Previous Buttons 97
7.3 Short-Answer Question Slide 100
7.4 Example of Printable Slide 107
7.5 Example Tutorial and Quiz PowerPoint Slides 110
7.6 VBA Code for Menus with Feedback in Tutorial and Quiz 111
7.7 VBA Code to Hide and Show the Quiz Button 114
8.1 Running a Macroin Edit View 132

8.2 VBA Code for Selecting Five Questions from a Pool of Questions . . 147

9.1 Typical Compile Error. i 156
9.2 Typical Compile Error.o i 157
9.3 Auto-Complete Suggestions from the VBA Editor............... 166

9.4 VBA Editor Suggests Parameters for the GotoSlide Method. 166
9.5 VBA Editor Suggests Parameters for the AddShape Method 167
10.1 Template for Animal Project. 174
10.2 Choosing Design Template As the File Type 176
10.3 Slides for Pick-A-Partner Template. 177
10.4 Pick-A-Partner VBA Code 179

10.5 Example of Slide Created When Someone Has Chosen to
Work with You o 181

Preface

Most educators have created simple presentations with PowerPoint®.
PowerPoint is a fine tool for adding media to a lecture, but it falls flat when creat-
ing interactive lessons for students to use while sitting in front of the computer.
That is, it falls flat unless you use the built-in scripting features of PowerPoint.

Starting with PowerPoint version 97, every copy of PowerPoint comes with
Visual Basic® for Applications (VBA). VBA can be used to add to the functional-
ity of Microsoft Office® applications, including Microsoft PowerPoint. With
the advent of PowerPoint 97, teachers can put limited interactivity into their pre-
sentations using action settings, hyperlinks, and buttons. These features allow
you to

* add buttons to control navigation (start your slide show with a menu,
for example, rather than requiring linear navigation, from slide to
slide to slide);

* jump to other PowerPoint presentations, other files, or Web pages;
and

* create rudimentary multiple-choice tests (clicking on a button with
the correct answer takes the student to a slide that says “correct,” for
example).

While this interactivity is useful, it is also very limited. VBA extends this to
nearly unlimited dimensions. With VBA, you can change the content and ap-
pearance of slides based on student input, ask for and process typed input, add
additional slides, hide and show graphics, and much more.

“Wait!” I hear you cry. VBA is a sophisticated programming language. Can
teachers become programmers? Certainly, many teachers can become program-
mers, but the goal is not to create programmers but rather scripters. A program-
mer learns all the subtleties of a computer language in minute detail. A scripter
might learn some of the details of the language but, more important, learns a few
easily modifiable scripts that can perform important tasks. Scripting is well
within the reach of many teachers, and taking advantage of the power of
authoring systems like PowerPoint is an important part of the International Soci-
ety for Technology in Education (2001) standards for programs in technology
facilitation:

* Standard III.A.7—Use methods for teaching concepts and skills that
support use of web-based and non web-based authoring tools in a
school environment.

xvi Preface

e Standard III.C.1—Use methods and facilitate strategies for teaching
problem solving principles and skills using technology resources.

e Standard V.C.7—Use examples of emerging programming, authoring
or problem solving environments that support personal and profes-
sional development

Scripting might not be a useful technique when used with a stand-alone
programming language, but the real power of using VBA with PowerPoint is not
merely that VBA is an accessible scripting language but that it is built into
PowerPoint. One of my students created a presentation about Hawaii. It included
pictures, videos, recorded voices, and links to Web sites. All of this used tradi-
tional PowerPoint technology (no scripting required). On top of that, it added an
interactive menu and a quiz with feedback about how well the user did on the
quiz. Building all of this from scratch with a programming or authoring tool
could be an overwhelming task, but 95 percent of the presentation was done with
traditional PowerPoint tools (things most teachers already know how to do or
can learn within a couple of hours). When a few scripts are added on top of the
traditional PowerPoint tools, the results are rich not only with media but also
with interactivity.

Remember, the more you know, the more you can do. With a few scripts,
you can add short-answer questions (with feedback about right and wrong an-
swers) and keep score. Add a few more scripts and you can have a menu that
keeps track of which sections of your presentation have been visited and only
shows the button to take the quiz when all sections have been visited. Add a few
more scripts and you can have the user type things that change the slides in the
presentation. The possibilities are endless.

The more you know, the more you can do. And you can always add more
traditional PowerPoint without knowing any more VBA.

I have been using this material (before writing a book about it) with my stu-
dents, who are mostly teachers, enrolled in a graduate course in multimedia de-
sign for the classroom, for about four years. They have created powerful projects
for their students (like the Hawaii project mentioned earlier). In addition, I have
been speaking about this at conferences and workshops. The overwhelming re-
action I get is, “That’s great! I didn’t know you could do that.”

While this book is not accessible for computer novices, teachers who are
beyond the level of computer beginner can use this technology to create power-
ful material for their students, material that goes beyond a simple page-turner.

For the professional multimedia designer, PowerPoint might not be the
right choice. However, expensive and complicated tools are not common in
schools. Using PowerPoint as a framework, teachers are able to add as much or
as little interactivity as their skills allow and their needs require. Thus,
PowerPoint is an appropriate multimedia tool for teachers and a powerful addi-
tion to a multimedia design class.

Preface xvii

This book can be used as a stand-alone book in a multimedia design class
for educators or as a companion for books like Ivers and Barron (2002) or
Agnew, Kellerman, and Meyer (1996), which focus on multimedia design and
using multimedia projects in classrooms but do not deal with a specific technol-
ogy for implementing the projects. It also stands by itself without a class. Any-
one with basic PowerPoint skills can sit down with this book and begin to create
powerful educational material for themselves, their colleagues, their students, or
their own children.

Chapter 1 begins the book with some important principles of instructional
design, including how to design your own projects and create assignments for
your students to design their projects. If this book is used in conjunction with a
book about design, the first chapter will provide an overview of what you will
find in the design books, but if this book is used by itself, this chapter is very im-
portant. Jumping in and creating things is fine when you are playing around, but
serious projects require some planning and design work, and Chapter 1 will give
you a foundation in that.

Chapter 2 begins to explore some of the traditional interactive multimedia
features of PowerPoint. Adding pictures, sounds, buttons, and hyperlinks is not
difficult, but many PowerPoint users have never used those features before.

Chapter 3 introduces VBA. You’ll understand how VBA fits into the world
of object-oriented programming and how that affects you as a scripter. As a
scripter, you won’t have to understand all of VBA and object-oriented program-
ming, but understanding objects and how to manipulate them will help you un-
derstand your scripts.

Chapter 4 begins the heart of the book as you start to learn about scripting
with VBA. You’ll learn how VBA is connected to PowerPoint and how to write
and run your first script. You’ll also learn about keeping your scripts private so
your students can’t look for the answers in your scripts.

Chapters 5 and 6 build your bag of scripting tricks. As a scripter, you will
be interested in taking scripts directly from these chapters and applying them to
your Own purposes.

While each chapter contains examples that you can use right away, Chapter
7 focuses on examples that you will be able to use to create quizzes and tests.

Once you have completed Chapter 7, you will have a large bag of tricks that
you can use by copying scripts directly from the book and possibly creating
some on your own. Chapter 8 describes some more tricks that you can use, par-
ticularly if you are ready to modify some of the ideas in the book for your own
purposes. It ends with a powerful example that I use with my daughter as she is
learning to read.

Once you have mastered a large bag of tricks, you might need some help cor-
recting your mistakes. Whenever you write scripts, even if you just copy them
from the book, you are likely to make a few mistakes. Fixing mistakes is called
debugging, and you will learn some of the secrets of debugging in Chapter 9.

xviii Preface

By the time you finish Chapter 9, you will be excited to create things your-
self, but you might want to share your knowledge with your colleagues and your
students. Some of them will share your enthusiasm and borrow your copy of this
book (or better yet, buy their own copy) and dive right into powerful
PowerPoint. Others won’t be ready for the technical challenge. Chapter 10 de-
scribes how you can use templates, so your colleagues and students can take full
advantage of the power of VBA scripting without knowing any of it. You can
use what you learn in Chapter 10 to provide a template for your colleagues or
students with the scripting already done for them (by you).

When you have completed the book, you might not be an expert at using
VBA to create powerful interactive multimedia projects, but you will have a
large bag of tricks that can help you do more with technology to make you a
better educator.

Writing this book has been a long process. I began my journey when I at-
tended a presentation at a conference in which the speaker was talking about all
the exciting educational things that can be done with PowerPoint. I thought that
he was talking about the things this book discusses, but I was wrong. I started ex-
ploring, and I found that no one was talking about these things, at least not for
educators. As I looked for books to help me, I found many (look in the Refer-
ences section at the end of the book), but none was geared to educators or to us-
ing PowerPoint interactively. I wanted to share this with my students, so I started
creating my own handouts. As the handouts grew, I began speaking about this at
conferences and giving workshops. Everyone was amazed at what PowerPoint
could do. By the time the handouts reached seventy pages, I knew it was time to
move from handouts to a book.

I would like to thank all the people who helped me along the way, but they
are too numerous to mention, so I will mention only a few. I would like to thank
all my students over the years in Multimedia Design in the Classroom, particu-
larly the first group, who had to endure the course with a few pages of handouts
that were being written during the course, in most cases the night before each
class. I also would like to thank Diana Sucich, one of my students who reviewed
the manuscript as it was morphing from a seventy-page packet of handouts into a
book. Her comments were invaluable. I also would like to thank Luis Bango, a
former student who suffered through Multimedia Design in the Classroom while
the handouts were not in the best shape and reviewed the final manuscript. I also
would like to thank the PowerPoint MVPs in the Microsoft PowerPoint
newsgroup. Several PowerPoint experts give their time in that newsgroup to an-
swer questions from beginners and experts alike with beginning PowerPoint
questions and complex scripting questions.

Finally, I would like to thank my family. My wife Emily has provided me
with unending love and support as I have stayed late in the office to work on the
book. My daughter Ella has been a guinea pig for some of my wacky projects,
particularly the example at the end of Chapter 9. Both my children, Ella and Ada,
have provided me with love and inspiration because I hope that my work will

Preface xix

help my children and all children by making the computer a more effective tool
for education.

You are about to embark on a great journey. At times you will be elated and
at times frustrated. If you persevere, you will have the power to make the com-
puter do what you want it to, so it can be a tool for you and your students’ learn-
ing. The computer shouldn’t be everything in education, but when it is used, it
should be used powerfully and effectively.

11

Multimedia Design

Introduction

Welcome to the world of powerful PowerPoint. This book will help you use
PowerPoint in ways you never thought were possible, with the ultimate goal of
creating better learning environments for your students. Whatever you do as an
educator requires some planning, whether it takes the form of detailed lesson
plans or a few notes jotted on the back of a napkin. When creating complex
learning environments, planning is very important. This chapter introduces
some of the basics of planning and design to help you create better learning envi-
ronments. You will be introduced to the benefits of multimedia, the design pro-
cess, benefits of having your students design multimedia, and metaphors and
organizations for multimedia projects.

Vocabulary
* Decide * Metaphor
* Design * Organization
* Develop e Storyboard
* Evaluate * Summative evaluation

e Formative evaluation

2 Multimedia Design

What Is Multimedia?

Multimedia is a term that has been around for a long time. Before comput-
ers, it referred to a combination of slides (from a slide projector) and sounds
(usually music from a tape player). It has been around for so long because people
have recognized that we can be engaged through multiple senses. Some people
are primarily visual learners, auditory learners, or kinesthetic learners, but most
of us are a combination of all three. Using different senses increases attention,
motivation, and, in many cases, learning. “The power of multimedia and
hypermedia presentation software comes with changes in the ways teachers and
learners have access to and demonstrate their understanding of knowledge, mov-
ing from a single dominant presentation and demonstration style (verbal/linguis-
tic, linear/sequential) to an integrated, multisensory learning and demonstration
‘microworld’ (Papert, 1992), where learners have more freedom of choice in the
mode of learning and the order in which learning takes place” (Male, 2003, p. 6).
As this quote suggests, multimedia involves multiple senses and a degree of
learner control and choice.

Robinette suggests, “Multimedia is about combining sights, sounds, and
interactive elements to create an experience unlike that which comes from sim-
ply reading text or idly viewing a video” (1995, p. 10). Goldberg says, ‘“Multi-
media, as [use it to define the cool new medium that I’ ve been going on about, is
the combination of audio/visual media elements with interactivity. . . . A typical
multimedia title might include any combination of text, pictures, computer
graphics, animation, audio, and video” (1996, p. 14).

Multimedia is about including a variety of media with interactivity. Typical
presentations (using PowerPoint or other presentation tools) emphasize the me-
dia and not the interactivity. When enhancing a lecture to present to an audience,
interactivity is not always important. However, when creating projects that your
students can control, picking and choosing where to go within the project,
well-designed interactivity is very important.

Interactive multimedia helps students learn by increasing motivation, by
giving them control over their learning, and by reaching them through different
senses. As you design multimedia presentations for your students, you decide
what media are most appropriate. Sometimes a picture is worth a thousand
words; sometimes a few words are worth a thousand pictures; and sometimes, in
the case of a struggling reader, for example, spoken words are more important
than everything else. A few bells and whistles, used sparingly and appropriately,
can increase motivation and hold your students’ attention, but a carefully de-
signed project with appropriate media elements can be a powerful experience for
the learner. The key is to design your projects well.

The Design Process 3

The Design Process

While playing around on the computer is useful to help you understand the
technology and brainstorm ideas for your project, the best projects come from
careful planning. When you first start a project, you might think that you are sav-
ing time by jumping right in and creating the project, but you are not. Agnew,
Kellerman, and Meyer (1996) outline a twelve-step process for designing and
developing a multimedia project:

1. Understand the scope of the project/assignment.

2. Brainstorm and do research.
3. Select pieces of information to include in the project.
4. Discuss several overall organizations.
5. Select an organization.
6. Decide on a metaphor for visualizing the body of information.
7. Decide on one or more media to represent each piece of information.
8. Prepare scripts and storyboards as required.
9. Fill in the organization with media.
10. Provide links among pieces of information.
11. Test the result with typical members of the project’s intended audience.

12. Revise the project.

Ivers and Barron (2002) propose the DDD-E model: decide, design, de-
velop, evaluate. Other instructional design models are more complex, but these
two models capture the important aspects of instructional design.

Don’t worry about following a specific step-by-step process. Most of the
steps overlap, and some steps, such as evaluation, are continuous and take place at
every stage of the process. That doesn’t mean you should jump right to developing
your project before deciding and designing—there is a general flow from step to
step—but creating a project involves continuous evaluation and may involve re-
thinking and redesigning parts of the project as the project begins to take shape.

Before beginning, you must decide what you want to do and what you want
your students to get out of the project. This includes understanding the scope of
the project and brainstorming ideas for the project. Starting with a clear idea of
what you want the project to cover is very useful. If you have certain objectives
(from your curriculum or not), those objectives will help you determine what
your project should cover. Try to limit the scope of the project, keeping in mind
the limits of your students’ attention span. Create a project that is small or build
in features that allow students to quit in the middle and come back to explore
other parts of the project.

4 Multimedia Design

Don’t be afraid to brainstorm ideas. That means that you can come up with
ideas for what you want to include that will be rejected later. This is part of the
power of planning. If you create half your project first, you have either locked
yourself into something that might not be what you want, or you have wasted a
great deal of time creating something that you will throw away. By playing with
ideas in the early stages of the design process, you can narrow down what you
want to do without throwing away large amounts of work.

While you are deciding what the project should include, research your sub-
ject. Be sure you understand the subject so you can create something that will
help others learn it. As you research, you should decide what information you
want to include and begin to collect the media you will use to represent that
information.

As you decide, keep in mind that your decisions are not set in stone. You
should complete the decide phase having a good idea of what you want to do, but
you should understand that the details can and will change as you move forward
with your project.

Once you have an idea about what your project will entail, you should be-
gin to design it. You will design the organization and metaphor for the project
(more about this in the next sections), you will create a storyboard for the project
to help you understand the flow and interaction of the project, and you will de-
sign the individual slides, figuring out what content and media go on each slide.
Now your project is taking shape, and you should have a fairly clear picture of
what the final project will look like. But again, this is not set in stone. The details
can and will change, but they should change within the overall framework you
have designed.

Next, it is time to develop your project. This involves filling in the pieces:
creating or acquiring any media elements you need, creating your slides, placing
your media elements and buttons on your slides, and linking it all together. This
is much easier when you know what you want to do, having decided on the pro-
ject and having designed the project first. The hardest part will be writing your
scripts to make the project do what you want it to do, and you will learn how to
do that beginning in Chapter 3.

The final phase is not really the final phase: evaluate. Evaluation is a con-
tinuous and ongoing process. You will conduct formative evaluation, in which
you check your work to make sure that everything seems to be doing what you
want, and you enlist others to check your work as well. This can happen at many
different points in the process, and it can be done by many different people, in-
cluding: you, your colleagues, your students, and other members of the intended
audience for the project. This formative evaluation will provide you with
feedback to improve the project.

You also will conduct summative evaluation when the project is complete.
As with any lesson, you want to think about specific ways you will know how
well the project worked with your students. This can be used to decide whether

Project Organization 5

or not you want to use the project again, and it can provide feedback for things
you might want to change about the project for next time.

Project Organization

As part of the design process, you must think about how your project will
be organized. Chapter 2 describes how to create hyperlinks in PowerPoint, and
Chapter 6 describes how to use VBA to move from any slide to any other. How-
ever, just because you can make links from any slide to any other doesn’t mean
that you want to. A project with a clear organization will help your students find
their way around the project.

There are several ways to organize a project. The simplest organization is
linear, in which the user goes from one slide to the next to the next to the next
(see Figure 1.1). This works very well for projects in which knowledge is being
built from prerequisite knowledge or in which specific steps are followed in a
specific order.

The First Step Tha Second Stap Tha Last Siep

Ty Lownar Toroeial

Figure 1.1. Linear Organization

However, many projects don’t require a linear organization and would ben-
efit from some other organization. Fortunately, hypermedia allows us to link any
slide to any slide that we want. We could follow a menu organization (see Figure
1.2, page 6). This organization allows the user to study the topics in whatever or-
der he or she wants and even allows the user to skip topics.

Some topics lend themselves better to a hierarchical menu structure in
which each subtopic has its own menu. Other projects might do better with a
completely hyperlinked organization in which any slide can lead to any other
slide.

The organization you choose should match the objectives of the project. If
it is not appropriate for students to skip sections, don’t allow it. You provide
links where you want your students to go (and in Chapter 2, you’ll learn about
Kiosk mode so you can make sure they only go where you want).

There are many potential structural organizations, but it is helpful to pick
something that will allow the user to navigate easily through your information. If
the structure is not easy to navigate, when a user goes through your presentation,
it is easy to get lost in hyperspace.

Thie First Topic

My Menu Tutorial

More About the
Firat Topic

& - E EeE

St Mone

The Socond Topic ";cft -ﬂ:ﬂrl the Still More
ond Topic
Menu
- CBgh foe Topis ———]_’ SRIE] s ke
- Ghok foe Topic 3 ————
Choh Jor Topic 3
The Third Topic H;; ;h;:;;hu Sul Mare
— Bl

s -

Figure 1.2. Menu Organization

Storyboards and Flowcharts 7

Metaphors

A metaphor is the way the user will think about the project. For example, a
geography project might choose a map metaphor where users click on certain lo-
cations on a map to visit the location. You might choose a book metaphor, start-
ing with a cover and a table of contents and referring to each slide as a page
(complete with page numbers and graphics that make the slides look like pages).
Metaphors can be complex or simple, with more complex metaphors providing
somewhat of an illusion that the user is actually in the metaphor. For example, a
travel metaphor might include animations of planes taking off and landing to
give the illusion that the user is actually going someplace.

Metaphors can be particularly helpful when you are not creating a project
but are assigning your students to create a project. This helps students to “un-
leash their creativity by finding new metaphors for information. Metaphors
stimulate visualizations” (Agnew, Kellerman, and Meyer, 1996, p. 121). Meta-
phors are a powerful tool to help users navigate a project and to help designers
think creatively about a project.

Storyboards and Flowcharts

Once you have chosen an organization and a metaphor for your project, you
need to figure out how the entire project will work. The more complex the pro-
ject, the more this step is needed. At a minimum, you should sketch in advance
your entire project, not necessarily with all the details, but with enough details so
you can see how the project holds together. Indicate how each slide will be
linked to any other slides and the kinds of (if not the exact) information that will
be on each slide.

Although you can do this with a computer drawing program, a small screen
size is limiting. You might want to map out your project on a large poster board
or a giant piece of newsprint. Index cards can represent each slide in your pro-
ject. You can use formal flowcharting symbols (see, for example, Ivers and
Barron, 2002, pp. 64—65), or you can use a less formal system, but you must un-
derstand and map out the project.

If you are not creating the project yourself but assigning it to your students,
this step becomes even more important. Your students are unlikely to do any
planning unless you specifically require it and require them to hand in their de-
signs. When they don’t plan, the quality of their work will suffer, and the time it
takes for them to complete their work will increase.

As you design the flow of your project, you also need to map out what will
happen on each slide. You might use your giant flowchart to fill in the details, or
you might use the cards on your flowchart as placeholders and have a separate
drawing of each slide. As you plan the flow of your project and what information
goes on each slide, you will be able to broaden and narrow your view of the pro-
ject, alternately seeing an overview of the project and focusing on the details.

8 Multimedia Design

This will help you adjust your design as you need to. It is much easier to move a
card or add a card or delete a card than it is to take a half-finished project, includ-
ing VBA scripts, and move everything around, rewriting the scripts to match the
redesign.

This does not mean that your design is fixed once you start developing your
project. But with a good idea of how the project works and most of the details in
place, you will find it easier to create the project and make changes as needed.

Designing Assignments for Your Students

As powerful as it is to create multimedia projects for your students, it is
more powerful to have them create their own multimedia projects. While the
project you create can increase motivation and tap into different learning styles,
having students create their own projects is an outstanding vehicle for creating a
student-centered and constructivist learning environment, for taking a
multidisciplinary approach to education, and for helping students understand
information and media.

Projects you assign can be simple or complex, involving a few different
types of media or several, using a simple design structure that you assign or a
complex structure and metaphor that your students choose. As you continue
through this book, you will learn advanced techniques for making PowerPoint do
what you want it to do. You might share these techniques with your students, or
you might let them create less complex projects. Another alternative is to create
templates for your students in which you create the basic structure of the project,
using simple or advanced PowerPoint techniques, and have your students fill in
the template with content and media. Templates are discussed in Chapter 10.

Student projects need to follow a similar design process to any other multi-
media projects. However, as a teacher, you must decide (1) how much you want
to provide for your students and (2) how much help you want to give your stu-
dents at each step.

First, you must create an assignment in a way that students can understand.
Agnew, Kellerman, and Meyer (1996, pp. 120-121) outline four keys to help
students create a well-organized multimedia project:

1. “[Al]rticulate a well-thought-out assignment.”

2. “[D]emonstrate excellent examples of projects that others have cre-
ated.”

3. “[Elncourage students to unleash their creativity by finding new meta-
phors for information.”

4. Help “students execute an effective process.”

As an educator, you probably are comfortable creating assignments for
your students. However, multimedia projects can be larger and more complex
than ordinary assignments. Being clear abut your purpose and expectations can

Designing Assignments for Your Students 9

help students understand what they are supposed to do and help them meet and
exceed your expectations. Be sure to match the project you assign to your curric-
ular goals and the technical skills of your students. If you plan to have students
create several multimedia projects, you can make the first project simple to help
them understand the technology. As their technology skills grow, the projects
can be more complex.

Many students need concrete examples. The more multimedia you do (for
yourself or your students), the more examples you will have to show students.

You also want to encourage creative thinking, including brainstorming
ideas for metaphors. A metaphor helps a user navigate through a project by giv-
ing the user something from the real world to relate to what the controls (such as
buttons and hypertext links) do. Metaphors can be closely related to the project
or can be an unrelated navigation and visualization tools. You can provide your
students with a metaphor (this might be appropriate for early projects), you can
brainstorm different metaphors for different projects as a class, you can brain-
storm with groups about metaphors for a specific project, or you can have groups
brainstorm on their own.

Finally, you will want to help your students with the design process. Stu-
dents might need help with all the design steps. You can give your students help
with all of the following:

* The Idea—A good assignment will have a clear set of objectives,
but it might allow students a great deal of latitude in picking a topic.
You might need to work with students to help them generate ideas
for their topic.

* The Research—Since one purpose of multimedia projects is to en-
hance learning in curricular areas, you will have to decide how much
of the research you will provide for the students. You could provide
all the information that will be used in the project. You could pro-
vide specific resources for students. You could help students find
materials (in the library or on the Internet, for example). You could
brainstorm ideas with students about where they might find the
information they need.

Selecting Information—Many students have trouble finding
enough information, and many have trouble selecting the informa-
tion to include. You might need to help students narrow down the
appropriate information to include; they might not be able to include
everything they find.

* The Organization and the Metaphor—Y ou might pick an organi-
zation and a metaphor for your students or help them find an appro-
priate organization and metaphor.

10 Multimedia Design

* The Media—Students might need help selecting and preparing the
media representations of their information. You might help them de-
cide what medium to use for each kind of information, and you
might help them with the technical process of creating or finding the
media representations. In the extreme case, you might give them
prepared media to use in their projects.

* Templates—You might provide a template for your students. This
can provide a metaphor, organization, and/or types of media.

In any of the above cases, you need to decide what is appropriate for your
students. Sometimes the best policy is to leave the students alone. At other times,
you will need to coach them throughout the entire project. At a minimum, your
students will need to check in with you on a regular basis, showing you the de-
sign at various phases. It is often a good idea to set deadlines for various parts of
the project, requiring students to turn in something to you at each of the twelve
steps of the design process (see “The Design Process” above) or at one or more
points along the way.

Multimedia projects are often an excellent vehicle for group projects. But
groups can be difficult. You may decide whether you want to group students by
ability levels, interests, skills, or their own choice. Once you have groups, gener-
ally of between two and five students, you need to help students work out the
roles they will play in the group. Some projects have natural roles that students
can play, dividing the project either by subject matter or technical specialty
(gathering information, video production, VBA scripting, etc.). Learning to
work with a group can be an important objective of the project, but group dy-
namics can be difficult, and you will have to monitor how well members of the
groups are working together.

Be careful about selecting the requirements for your project. Make sure that
they are suitable for your goals. Remember that part of the idea of learning mul-
timedia is to see that great artwork or sounds do not necessarily mean great infor-
mation. Make sure that, if your goal is to have worthwhile information, students
are aware that that is important.

Finally, try to save time for reflection. A great deal of the learning (for you
and your students) can come from looking back at the projects and seeing what
went right and what went wrong and what was learned.

Conclusion

This chapter has given you a brief introduction to multimedia, including
what it is and what its benefits are, and has introduced you to the design process.
If you plan carefully, you will save yourself time and limit frustration, and you
will create better projects. Finally, the chapter introduced some ideas for having
your students be multimedia designers. This chapter was an introduction to,
rather than complete coverage of, the design process. You might want to check

Conclusion 11

out Ivers and Barron (2002) or Agnew, Kellerman, and Meyer (1996), which
provide more details about the design process and using multimedia with
students.

Now that you have a basic understanding of the design process, you are
ready to apply it to PowerPoint. The next chapter introduces some of the interac-
tive and multimedia features of PowerPoint and prepares you to conquer the ad-
vanced scripting features of PowerPoint in later chapters.

P

Traditional Multimedia
Features of PowerPoint

Introduction

Some people, even long-time PowerPoint users, are not aware of many of
the multimedia and interactive features of PowerPoint. Most of this book de-
scribes how you can use scripting features of PowerPoint to make presentations
interactive. This chapter briefly describes some of the multimedia and interac-
tive features that do not require scripting. You will learn about media elements,
such as pictures and sounds, and you will learn about interactive elements such
as hyperlinks and action buttons. In addition, you will learn about the important
differences in Slide Show View and Edit View when editing your slides. Finally,
you will learn about Kiosk mode and saving your project as a PowerPoint Show
to control how your students navigate through your presentation.

Vocabulary
* Action buttons * Hyperlinks
* Clip art * Hypertext
* Copyright * Kiosk mode
» Edit View e Linked
* Embedded * PowerPoint Show (.pps)

o Fair use e Slide Show View

14 Traditional Multimedia Features of PowerPoint

Before You Begin

This book assumes that you know the basics of PowerPoint. If you don’t,
you should spend a couple of hours playing with PowerPoint and/or buy an in-
troductory book about PowerPoint. Try to get one that is specific to the version
of PowerPoint that you own. While most features are identical from version to
version, there are a few subtle differences in each version.

Before you begin, you should check a few of PowerPoint’s settings. Start
PowerPoint, and choose “Options” from the Tools menu if you are using a Win-
dows computer, choose “Preferences” from the Edit menu if you are using a
Macintosh with OS 9 or earlier, and choose “Preferences” from the PowerPoint
menu if you are using a Macintosh with OS X. Regardless of which version you
are using, you will have several tabs at the top of the dialog box. These tabs in-
clude View, General, Edit, and Save. The remaining tabs will vary by which
version you have.

Click on the Save tab. The first item is a check box for “Allow fast saves”
(see Figure 2.1). If this box is checked, click on it to remove the check mark. If
you allow fast saves, PowerPoint will spend less time saving your work, but it
will create larger files and files that are more prone to problems. While you are
unlikely to ever find that PowerPoint has corrupted your project, you are less
likely to have problems if you uncheck “Allow fast saves.”

i I el | Edie | Frirk
Save | Secowy | soelegandonde
Sae e
Tyl Lt ievois

™ Promgt For e oropestiss

I+ Ghvn Aubaflacovel nfo every ||.u H. anutes
¥ Lol chocls when siing o5 previoos vermion
Saren ErwtiPond Hies a3

[st St st |

[t st Fil lootion!
|-\. D el el STl U Conl iy Dadurenll,
Fang iphen o cument daburend ek

I Erbed TeveTyoa fonks
=

[| cacel |

Figure 2.1. No Check Next to “Allow fast saves”

Inserting Pictures 15

Next, click on the Edit tab. Find the “Undo” section. Change the setting for
“Maximum number of undos” to 10. In many applications, when you make a
mistake, if you don’t do anything else, you can fix it by choosing “Undo” from
the Edit menu. In PowerPoint, you can fix not only the last mistake but several
mistakes before that. This setting tells PowerPoint how many things it has to re-
member so you can undo them. In theory, you might want to have as many as
possible, but several PowerPoint experts have noticed that the higher this num-
ber is the more likely you are to have problems with PowerPoint. Setting it to 10
gives you enough ability to correct your mistakes while minimizing the likeli-
hood that you will have a problem.

Another setting you might want to change can be found under the General
tab. You might want to change the setting for “Link sounds with file size greater
than.” This setting is discussed later in this chapter.

Once you have changed the settings to not allow fast saves and to limit the
number of undos, click OK to save the settings.

Next, choose “Customize” from the Tools menu. Click on the Toolbars tab
and make sure there is a check next to “Drawing.” The “Drawing” toolbar will
be very useful for drawing your own shapes and modifying the appearance of
shapes that are drawn for you.

Finally, before you start working on a PowerPoint project, create a folder
on your disk for your project and save your presentation to that folder. This will
be important when you start including hyperlinks and multimedia objects in
your presentation. Most elements of your presentation will be embedded in your
presentation. That is, they will be part of the PowerPoint file. Other elements
will be stored in other files, and your presentation will link to those other files. If
you save your presentation first and you save any linked files to the same place
you save your presentation (that is, the same folder on the same disk), your links
will continue to work when you move the presentation (along with all the linked
files) to another place, such as another folder, another disk, or another computer.
If you don’t save your files first, the links are likely to stop working.

Inserting Pictures

You can insert pictures into a PowerPoint presentation in several different
ways, including by inserting from the clip art library, by inserting from an exist-
ing file, and by copying and pasting from another place, including the World
Wide Web. In addition, if you are artistically inclined, you can use the drawing
tools to draw your own pictures. Generally pictures are embedded in your
PowerPoint presentation. That is, once you insert them, they become part of the
presentation, regardless of what happens to the original picture.

PowerPoint recognizes many different types of picture files, including
most of the common ones you are likely to encounter, such as Graphic Inter-
change Format (.gif), Joint Photographic Experts Group (.jpg), Tag Image File
Format (.tif or .tiff), and Bitmap (.bmp). If you try to insert a picture into your

16 Traditional Multimedia Features of PowerPoint

presentation and PowerPoint gives you an error or asks you how to convert it,
you will need to find a program (such as GraphicConverter™ or Adobe
Photoshop™) that can read that file type and create files of one of the types that
PowerPoint can read.

To insert a picture from a file, choose “Picture” from the Insert menu and
choose “From File . . . ” from the flyout menu (see Figure 2.2).

woart | Fgrmat Toch Sige Show Ydow el
1 P Suote Chitand .‘t:.‘_‘.ﬂ:g EFs N L
ST KA & i Dw

Cuptoaie Shae

Sl Mol

Dhate sl Taves

L | o
Tt Yo [Ran |
SiEi bom Dothee
T B ' AL Doan !
2 Cugro= llad Erom Fim 1|
Bl Tegt Bow |l Frim Srannge of Camern
B el Soordy W tew [Phoso Adoiam
u hyart % Ohredeismten T
| Teple L Asoihapen
CRymis 4 st
™ I ki

Figure 2.2. Choosing Insert Picture From File from the Menu

Although the dialog box you see will vary slightly depending upon which ver-
sion of PowerPoint you are using, it should look similar to the dialog box you see
whenever you try to open a file on your computer. From this point, locate the file
with the picture you want to insert and click on the “Insert” button.

While inserting a picture from a file has remained fairly consistent from
version to version of PowerPoint, inserting clip art has changed quite a bit. You
start by choosing “Clip Art. . .” from the flyout menu instead of “From File . ..”
(see Figure 2.2). In PowerPoint 2002, you can search for clip art using the dialog
shown in Figure 2.3, use the Clip Organizer, or search Microsoft’s fairly exten-
sive collection of clip art on the Web. From Microsoft’s Web collection, you can
download clip art into your own collection so you can use it later without going
to the Web.

Inserting Pictures 17

4 0 lnuen Clip An - %
fparch R
Sinarch Tt

fither Search Dptioms
Sharch int
Al colesiiinrs -
MErauety sk e .
all mada file ypes -

firv s
21 Chp Organicor
iR Cipe Ordvn
T Tigs e Firding Dlips

Figure 2.3. Insert Clip Art in PowerPoint 2002

Another way to add graphics to your presentation is to copy and paste. Gen-
erally, if you can see it on your computer you can copy it into your presentation.
However, you must be careful; although you might be able to copy a picture into
your presentation, you might not have the right to copy it into your presentation.
Be sure to follow copyright law and guidelines, noting that just because you
don’t see a copyright symbol © does not mean that the picture or Web page is not
copyrighted. While the fair use aspects of copyright law give you a great deal of
freedom to use copyrighted material for educational purposes, many restrictions
apply as to what you can use, how much you can use, and for how long you can
use it. Your best bet is to use material you have created yourself, material that is
in the public domain (see for example, http://www.pics4learning.com/), or ma-
terial for which you have obtained permission to use. But if you must use copy-
righted material without permission, you should pay close attention to the Fair
Use Guidelines for Educational Multimedia (see http://www.utsystem.edu/ogc/
intellectualproperty/ccmcguid.htm). While these guidelines are not the law, they
are a good guide for your fair-use rights to use copyrighted material.

If you are on the Web and you see a picture that you want to use and you
have the right to use it because of fair use, because the picture is in the public do-
main, or because you have permission to use it, you can generally copy it into
your PowerPoint presentation. If you are on a Macintosh, point your mouse to
the picture you want to copy and hold the mouse button down until you see a

18 Traditional Multimedia Features of PowerPoint

menu that pops up. If you are on a Windows computer, point your mouse to the
picture and right click (that is, click the right mouse button; see Figure 2.4).

Figure 2.4. Right Click the Mouse

The flyout menu that you see should look something like the menu in Fig-
ure 2.5. It will vary from browser to browser, but you should see “Copy” as one
of your choices. Choose “Copy” (by clicking or left clicking on the choice in the
menu). Now, when you switch back to your PowerPoint presentation, you can
choose “Paste” from the Edit menu to put the picture in your presentation.

Once a picture is in PowerPoint, it is an object, and you can move it around,
resize it, or even assign it actions. Pictures are always embedded in the presentation,
so you don’t need the original picture file to see the picture within PowerPoint.

Sounds

PowerPoint presentations can include sounds in a wide range of formats.
Like pictures, the sounds can be inserted from clip art or from a file. Sounds can
also refer to a CD track or be recorded, assuming you have a microphone con-
nected to your computer. You can make the appropriate selection by choosing
“Movies and Sounds” from the Insert menu.

If you choose to use a CD track for your sound, then the CD must be in the
computer when you are inserting the sound and whenever you are running the
presentation. This works well if you are presenting something to an audience,
but it works poorly if you are putting the presentation on several computers for
your students. A better alternative might be to import the CD track into your
computer, but you must be careful about copyright guidelines, which limit the
amount of a song you may use to 10 percent of the song or thirty seconds,
whichever is less.

Sounds 19

Save Piclure A,
E-snal Pichure...

Frifd Fchimds.. ..

0 P My Pctunes

Sob a3 EBackground
Sat as Deshrop Item...

Copey
fidd ko Faworites..
Fropsttias

Figure 2.5. Flyout Menu to Copy a Picture from a Browser

Recording your own sounds is a good option because, in an educational set-
ting, much of the sound that is valuable is text that is read. If you teach students
who are still learning to read or students with special needs, providing a button to
have text read can be very useful. If you teach proficient readers, allowing new
or difficult vocabulary to be read can be very helpful. When you choose “Record
Sound” from the “Movies and Sounds” flyout menu of the Insert menu, you will
get a dialog box like the one in Figure 2.6. (Note that this dialog box will look a
little different depending upon which version of PowerPoint you are using.) Be
sure that you give your sound a specific name so all your sounds are not named
“Recorded Sound.” Click on the circle to begin recording your sound and click
on the square to stop recording. Click on the triangle to listen to the sound.

The biggest problem with sounds is inserting them into your presentation
on one computer only to find that they don’t play on another computer. This usu-
ally has to do with whether the sounds are linked or embedded.

EIET
Mare: | R el Sunand | o |
Foeal sound egth: 1)

Carnnd |

v =] o]

Figure 2.6. Record Sound Dialog Box

20 Traditional Multimedia Features of PowerPoint

Linking and Embedding Sounds

When you include some elements in PowerPoint, they are embedded in your
PowerPoint presentation. That means that the element becomes part of the
PowerPoint file. Other elements are inserted as links to other files. Pictures are
generally embedded in the presentation. Movies are links to other files. This
means that if you insert a picture into a PowerPoint presentation, you no longer
need the original picture. The PowerPoint presentation has the picture inside it, so
you can move the presentation to another disk or delete the original picture, and
the presentation will still show the picture. If you insert a movie into a PowerPoint
presentation, the movie is not part of the PowerPoint file. The PowerPoint presen-
tation contains a pointer to the file. If you move the PowerPoint presentation to
another disk or delete the original movie, your presentation will no longer play
the movie.

Sometimes sounds are embedded, and sometimes they are linked. Two
things affect whether they are embedded or linked: the type of sound and the size
of the sound. Sounds of type Audio Format (.au), Audio Interchange File Format
(.aif or .aiff), and Musical Instrument Digital Interface (.midi or .mid) are always
linked. Sounds of type Waveform Audio (.wav) can be linked or embedded de-
pending on the size of the sound. Waveform Audio sounds that are greater than
the size of the “Link sounds with file size greater than” setting will be linked.
Waveform Audio sounds that are smaller than that setting are embedded. You
can change this setting by going to the “General” tab of your “Preferences” or
“Options” (the place you made many of the changes to settings in the “Before
You Begin” section of this chapter). Look for the number next to “Link sounds
with file size greater than.” This number is in kilobytes and usually starts at 100.
Most clip sounds (such as boings and beeps and applause) are far less than
100kB, but longer sounds can be larger. I generally set this setting to 999kB to
ensure that most of the sounds I use will be embedded.

In the “Before You Begin” section of this chapter, I suggested that you cre-
ate a folder for your PowerPoint project and save your presentation there before
you do anything. This is to prevent problems with linked files. It is fine to have
linked files in your PowerPoint presentation, whether they are sounds or movies
or other files. The key is to make sure that the links work when you move your
presentation to another disk or another computer. If you have saved your
PowerPoint presentation to a folder, and you have saved any linked files to that
same folder before linking to those files, your presentation should be portable as
long as you move all the files together (i.e., move the whole folder).

Linked files become a particular problem with sounds or movies taken
from the Clip Organizer. On different computers with different operating sys-
tems (even different versions of Windows), even the standard clip sounds can be
located in different locations. In addition, different computers have different clip
sounds loaded on them. If you insert a sound from the Clip Organizer and the

Hypertext Links 21

sound is linked, there is a good chance that the sound will not play on other com-
puters. To alleviate this, you should find out where the sound is located on your
computer and copy the sound you intend to use into your folder with the presen-
tation. On my Windows computer, many of the standard clip sounds can be
found in the folder: “C:\Program Files\Microsoft Office\media\CntCDI1\
Sounds,” but that is unlikely to be where they are on your computer. On my
Macintosh, the standard clip sounds can be found in “Macintosh HD:Applica-
tions:Microsoft Office X:Office:Sounds.”

Are My Sounds Linked or Embedded?

If you have inserted a sound and it is embedded, you do not need to worry
about where the sound file is. If it is linked, you do need to worry about it. While
knowing the size of the sound, the size of your setting for “Link sounds with file
size greater than,” and the type of sound will help you predict whether the sound
will be linked or embedded, you will want to check to be sure.

Once you have inserted a sound, click on the sound icon and choose “Sound
Object” from the Edit menu. At the bottom of the dialog box, you will see “File:”
and either “[Contained in presentation]” or a path to the file. The former indi-
cates an embedded file, and the latter indicates a linked file. While the path to the
file might help you locate the file (so you can copy it to your project folder), the
dialog box is generally too small to show the entire path.

Hypertext Links

Before version 97, PowerPoint was simply a tool to present material. Pre-
senters would stand up in front of an audience and go through slide after slide.
PowerPoint’s advantage was that media (text, graphics, sounds, videos, etc.)
could be incorporated into the presentation to add bells and whistles and to pres-
ent information in a variety of formats. PowerPoint 97 changed all that. OK,
PowerPoint 97 changed very little of that because most people still use
PowerPoint for linear presentations. However, PowerPoint 97 allows you to use
it in different ways.

One tool that was added to PowerPoint was hyperlinks. Hyperlinks allow
you to create presentations that are nonlinear. With the popularity of the World
Wide Web, everyone is used to clicking on text to jump somewhere, and
PowerPoint gives you that capability. You can create hypertext links to other
places in your presentation, to Web pages, and to other files.

Linking Within Your Presentation

Being able to link to other places in your file makes PowerPoint a more
powerful presentation tool, but it also gives you the power to create projects that
users navigate themselves. Presentations no longer have to go from one slide to

22 Traditional Multimedia Features of PowerPoint

the next to the next to the next. You can make them go anywhere. If you are giv-
ing a presentation, you might want to link to slides with the answers to questions
you anticipate being asked. If you are creating something for your students, you
might use a menu structure in which students choose a topic from a menu and
when finished with that topic, jump back to the menu.

To link to another place within your PowerPoint presentation, create a few
slides first, perhaps creating a menu slide that will link to the other slides. High-
light the text you want to link and choose “Hyperlink” from the Insert menu. Be
sure to highlight the text; if you don’t, PowerPoint will make a single word the
link. See Figure 2.7.

B | et | fymel ook S S e | O
o 8 ||ty "L ROBGasE ™ [,

g idadd 3 JEE[A & A e i,
T M - B &

4 3 1 i . '] . | T
ey s _
|

Skl

laprerd |
ey fre ey
i rmote. | enu
ST]

; T : i S
oy
8 m
Siove oral Tl L]

- btractmg Fractions
== %wdltiplying Fractions
Dividing Fractions

Figure 2.7. Insert Hyperlink

The exact format of the dialog box that you see will vary based on which
version of PowerPoint you use, but it should look very similar to Figure 2.8 or
Figure 2.9.

Hypertext Links 23

Inzert 1pedink

Liskin: § | &

Pinplay: fdiog bemtiam P :
| screentip.. |

LT, Ot R,

P D) s

Lo R parth fo e TEse vom wn? B0 [eak te. Click Favoritesar Beotn
[ruirssals Ba Bk & oo e yvu' e vkl Blare o vicw Teespasil iy

e b

'@ | | | Lcati_ |
Iy] 0TI R B p SnEsiTic leoatinm Careiar] wilhem (ke 108, soier
1kt irmd off Elsb st deborwe i CHASE Liche B Taid il

%

Figure 2.8. Insert Hyperlink Dialog in PowerPoint 2001

i x|
Uk e it ton lgainy | il Fracnim ST ..
[L= Sebbact A pliga i hie dlumans: Lk e
I'l‘.plnl Hie or Fru! Shis
ek L ke
: Pt Bl
%] Frorvus S
A el i Tikes
1 Arhesadic With Faachiors:
. Maru
1 1, B I ptitaret
I:ln.-ll'.lpl & Sadir wolig P b
Darumant b Mullgeag P lren
6. Drvinieg Pt lioeru
st Sheats s sl b
E uul-'ﬂ':t]ih'n
| | concw

Figure 2.9. Insert Hyperlink Dialog in PowerPoint 2002

In some versions, you will see tabs for “Web Page,” “Document,” and
“E-mail Address” (see Figure 2.8). In other versions, you will see tabs for “Ex-
isting File or Web Page,” “Place in This Document,” “Create New Document,”
and “E-mail Address” (see Figure 2.9). To link your text to another slide, choose
“Document” or “Place in This Document.” If your screen looks like Figure 2.8,
click on the “Locate . . . ” button in the “Anchor” section of the dialog box. Now
your screen should look like part of Figure 2.9 with choices to link to “First

24 Traditional Multimedia Features of PowerPoint

Slide,” “Last Slide,” “Next Slide,” “Previous Slide,” “Slide Titles,” and “Cus-
tom Shows.” If you don’t have any choices for slides under “Slide Titles,” click
on the triangle or plus sign next to “Slide Titles” and the names of all your slides
should appear. This is where you can choose a particular slide to link to. Click on
the slide title to which you want to link and click OK. The highlighted text
should become underlined and change color (based on the colors in the template
you are using).

Some of you tried to click on your text, and it didn’t take you anywhere.
That’s OK. As you know, PowerPoint has different views or modes in which
you can see your slides. We can edit our slides in Edit View (sometimes called
Normal View), but we run our presentation in Slide Show View. Our links will
only work in Slide Show View. Choose “View Show” from the Slide Show
menu to take you into Slide Show View (that’s the view where you only see your
slide on the screen with no menus or toolbars). Now you should be able to click
on your hypertext link to take you to another slide. You’ll notice that when you
point to a hypertext link (or any element of PowerPoint on which you can click),
your cursor changes from an arrow to a hand. Watch for that change in Slide
Show View so you can see what is clickable and what is not.

Once you have linked one part of a menu, it is easy to follow the same steps
to link the rest of the items in the menu: Highlight the text you want linked,
choose “Hyperlink . . . ” from the Insert menu, choose “Document” or “Place in
This Document,” click on the plus sign or triangle if necessary to see the titles of
your slides, click the appropriate slide title, and click OK.

Linking Outside Your Presentation:
Web Pages and Other Documents

While linking within your presentation allows your presentation to be inter-
active, linking outside your presentation allows the interactivity to extend be-
yond PowerPoint and allows your PowerPoint document to serve as a
springboard to other resources. During a lecture, you can jump to a relevant Web
site via a link in your presentation or jump to any other document on your com-
puter. An interactive project can include some of the content within the
PowerPoint project and use hyperlinks to connect to Web pages with more de-
tails, Word documents with extensive rubrics formatted as tables, movies or
sounds in formats that PowerPoint cannot recognize, etc.

To link to a Web page, choose the “Web Page” tab in Figure 2.8 (page 23)
or “Existing File or Web Page” in Figure 2.9 (page 23). From there, simply type
the URL (uniform resource locator; that’s the Web address) in the box labeled
“Address” or “Link to.” Be sure to include the complete address (which gener-
ally starts with “http://”). Alternatively, click on the button labeled “Launch
Web Browser” or the “Browse the Web” icon (it looks like a globe with a magni-
fying glass) to launch your Web browser. In some versions of PowerPoint, wher-
ever you browse will automatically be inserted as the link; in other versions, you

Buttons 25

will have to copy the URL and paste it into PowerPoint. Note that if you have to
paste and your Edit menu isn’t active, you usually can use the keyboard shortcut
(control-V in Windows or command-V on a Macintosh) to paste.

To link to another document, choose the “Document” tab in Figure 2.8 or
“Existing File or Web Page” in Figure 2.9. Click on the “Locate . . . ” button or
the “Browse for File” icon (it looks like an open folder with an arrow opening it)
to get the standard Open File dialog box. In Windows, you might have to pick
files of type “All Files” to be sure you can see documents that PowerPoint does
not recognize.

Note that when you are choosing a file, you are creating a link. Just like
linked sounds, if you want PowerPoint to be able to open the document when the
presentation is moved to another computer, you should put the file in the folder
with your PowerPoint file before linking to it.

Buttons

Sometimes you want your users to click on text to follow a hyperlink, and
sometimes you want them to click on a button. PowerPoint provides buttons
with a few different icons for different purposes. Choose “Action Buttons” from
the Slide Show menu, and a flyout menu will appear with either icons for buttons
or names of buttons. Figure 2.10 shows the twelve different kinds of buttons:
Custom, Home, Help, Information, Previous Slide, Next Slide, First Slide, Last
Slide, Last Slide Viewed, Document, Sound, and Movie.

<
]

Figure 2.10. The Twelve Types of Buttons

The button icons do not have to correspond to the action the button will per-
form, but good rules of design dictate that the icon should make sense for what is
going to happen when the button is pressed.

Once you select a button (from the flyout menu from “Action Buttons”),
your cursor will change to a plus sign. You can either click on your slide and a
standard size button will appear, or you can drag the mouse to create a button of

26 Traditional Multimedia Features of PowerPoint

any size you like. Don’t worry if the size isn’t perfect; you can always click on
the button and drag it from the handles to change the size.

Once you create the button, you will be prompted with the dialog box
shown in Figure 2.11.

i
Ackion an ok

 jd
T Mvnechnhc e

T Bun program;

Figure 2.11. Action Settings for a Button

This dialog box allows you to have your button do many of the same things you
could do with a hyperlink. Unfortunately, the same things are done in a slightly
different way.

To link to another slide, you will choose “Hyperlink to” and pick from the
drop-down menu. If you chose an icon for your button, “Hyperlink to” might al-
ready be chosen with PowerPoint’s best guess for what you want to do. If
PowerPoint guessed correctly, just click OK; otherwise pick something else.

Like the hyperlinks for text, you can choose “Next Slide,” “Previous
Slide,” “First Slide,” “Last Slide,” and “Custom Show.” You can also choose a
specific slide by choosing “Slide . . .,” which will prompt you for the slide to link
to.

In addition to the choices that were available for hyperlinks for text, you
can also choose “Last Slide Viewed,” which takes you to the slide that took you
to the current slide. Imagine a quiz with several questions. Each wrong answer
leads to a slide with the word “Wrong” (or some more gentle reminder that the

Text for Buttons 27

incorrect answer was chosen) on it. The “Wrong” slide can contain a button that
returns to the last slide viewed, so it always returns to the question that was just
answered, no matter which question that is. Another additional option is “End
Show,” which will quit out of Slide Show View.

The “URL .. .” choice will allow you to type in a Web address, but it does
not give you the option to browse for a Web address. “Other PowerPoint Presen-
tation” not only lets you choose another PowerPoint file, but it also lets you pick
which slide in that presentation the button will go to. Finally, “Other File . .. " is
just like browsing for a file when choosing “Existing File or Web Page” or
“Document” with a hypertext link.

Once you have chosen where to “Hyperlink to,” click OK. If you ever want
to change what the button does, click on the button to select it and choose “Ac-
tion Settings” from the Slide Show menu.

Remember that buttons, like hyperlinks, only work in Slide Show View. If
you click on them in Edit View, you will select them. Clicking on them in Slide
Show View will do whatever action you set the button to do.

Now that you have seen a few things that buttons can do that hyperlinks can-
not, I’ll let you in on a little secret: Any PowerPoint object, including text, can have
the same action settings as a button. If you click on a picture or a shape drawn with
the Draw tools, or you highlight text, you can choose “Action Settings” from the
Slide Show menu and get all the same options described in this section for buttons.

Text for Buttons

In some cases, an icon is enough to let the user know what the button does,
but words are often clearer. Sometimes the best choice for a button is a “Cus-
tom” button (that’s the blank one with no icon) and some text. To add text to a
button, right-click on the button (control click on a Macintosh) and choose “Add
Text.” If the button already has text in it, you will have the option to “Edit Text”
instead. You should see the cursor flashing inside your button waiting for you to
type whatever text you want to appear in the button. This text can be formatted
for font, size, style, and color, just like any text object.

If the text is too big to fit in the button, you can change the font size, or you
can change the size of the button by dragging from the handles.

tings for the text instead of the entire button. Your clue that
you have done this is that the text will change color and be
underlined if it has action settings associated with it. Figure
2.12 (page 28) shows a menu button that has the link associ-
ated with the text, not the entire button.

@ When a button has text, it is easy to change the action set-

28 Traditional Multimedia Features of PowerPoint

Menu

Figure 2.12. Button with Action Settings for the Text

The problem with this is that if a user clicks anyplace on the button except
the text, the button will not work. This situation can be even worse, if the button
itself has action settings to do one thing, and the text of the button has action set-
tings to do something else. If this happens, highlight the text in the button,
choose “Action Settings” from the Slide Show menu, and click “None” for the
action.

To be sure that you are setting your settings for the button itself and not just
the text, click once on the button. If you see a flashing cursor in the text, click on
the button again, but be sure to click somewhere outside of the text. Watch the
shape of the cursor for the mouse. If it is the text cursor (known as the “I bar” be-
cause it looks like a capital I), then you are clicking in the text. Otherwise you are
clicking outside of the text. Once you have selected the button, and not the text,
you can choose “Action Settings” from the Slide Show menu.

Sound for Buttons

In Figure 2.11 (page 26), you will notice that you can check “Play Sound”
at the bottom of the Action Settings dialog box. From the drop-down menu be-
low that, you can choose from a few of the canned sounds that come with
PowerPoint. You can also pick a sound file by choosing “Other Sound . . .” from
the bottom of the list.

You might notice, however, that there is no option for recording your own
sound. Because this is the most useful option for sounds for educational pur-
poses, it is important to be able to do this. You might want a button to say where
you are going when you click on it, you might want a button to read the text on a
slide, or you might want to pronounce a vocabulary word when the word is
clicked. This is all possible in PowerPoint.

Earlier in this chapter you learned how to record a sound to place it into
your presentation by choosing “Movies and Sounds” from the Insert menu. Un-
fortunately, you did not have a choice about the icon used for the sound. The
icon was always a little speaker. Perhaps you can compromise and use that icon
instead of a button, but that will not work for vocabulary words. The solution is
to add the sound with the speaker icon and then delete the icon. Remember that I
warned you to always give your sound a sensible name when recording it? Now
is the time you will use that name. Once you have recorded a sound, it is part of
the presentation. It remains part of the presentation even if you delete the icon
that plays the sound.

Controlling Navigation with Kiosk Mode 29

If you want a sound associated with a button, word, or any other
PowerPoint object, perform the following steps:

1. Go to the Insert menu, choose “Movies and Sounds,” and choose
“Record Sound” from the flyout menu.

2. Record the sound as described in the “Sounds” section earlier in this
chapter. Be sure to give the sound a name other than “Recorded
Sound.”

3. Click once on the sound icon to select it and hit the Delete or Back-
space key on your keyboard to delete the icon.

4. Select the object or text you want associated with the sound and
choose “Action Settings” from the Slide Show menu.

5. Check the “Play Sound” check box and choose your sound from the
drop down menu. Your sound will be listed with the name you gave it.
Note that you might have to scroll up or down to find your sound, as it
might be in the list in alphabetical order or at the top of the list of
sounds.

Controlling Navigation with Kiosk Mode

Now that you can create buttons and hyperlinks to take users where you
want them to go, you might not want them to go anywhere you don’t specify.
Normally in PowerPoint, a mouse click, the space bar, the right arrow, and the
Page Down key all move you to the next slide. If you have carefully planned
choices for the users, you don’t want them to mess that up by clicking and going
to the next slide. The solution is Kiosk mode.

Choose “Set Up Show” from the Slide Show menu to get the dialog box
shown in Figure 2.13 (page 30). In this dialog box, click on “Browsed at a Kiosk
(full screen).” You now have complete control over the user. The only naviga-
tion key that will work when in Slide Show View is the Escape key, which will
exit the show. This means that you must have buttons or hyperlinks to do any-
thing. You cannot rely on the user to click the mouse anywhere to advance to the
next slide because that will only work if the user clicks on a button.

One difficulty with Kiosk mode is animation. Animation in PowerPoint
can be automatic or manual. Automatic animation works fine with Kiosk mode.
Manual animation does not. If the user has to click or hit the space bar to activate
animation (such as to have the next line of a bulleted list fly in from the left), this
will be blocked by Kiosk mode. The solution is to make all your animation
automatic.

30 Traditional Multimedia Features of PowerPoint

CUCC— EIE
e typ b e,
I~ Fresented by o peskee (Ml poeen) |
7 rowntee] Ity ekl (rirudicons) (ol = e o=
ST r Cogl i
1= Breweind o i bioeh [l sermen | i
o pre T Manaaly
[~ Swy vl bund puas aticss i¥ . Ly i, F prisark
[™ - st anesstion nﬂhnﬂm
[— | [Free W er V7|
=
Pafirnaee
rlhhednwuqmtmuﬁm T |
St ghows psoiubion: [[Ihrl Currend Bk] ﬂ
[] cew |

Figure 2.13. Selecting Kiosk Mode

If you choose to animate text, whether or not you use Kiosk mode, you
should animate your navigation buttons as well. Have them appear on the screen
after all the text has appeared. By doing this, users won’t click a button to go to
another slide before all the text has shown up on the current slide.

Saving As a PowerPoint Show

Once you have created a presentation for others to use, you do not necessar-
ily want them to edit the presentation or even look at it in Edit or Normal View.
You might want to save your presentation as a PowerPoint Show. If you dou-
ble-click on a normal PowerPoint file, it will open in Edit or Normal View, where
you can scroll through all the slides and edit them. If you double-click on a
PowerPoint Show, it will open in Slide Show View. In addition, when you exit the
show (by getting to the end of the show, hitting the Escape key on the keyboard, or
clicking on a button tied to the “End Show” action), a PowerPoint Show will quit
out of PowerPoint altogether and not return to Edit or Normal View.

To save a presentation as a PowerPoint Show, choose “Save As . ..” from
the File menu and pay attention to the “Save as type.” If you choose ‘“PowerPoint
Show,” it will create a .pps file (see Figure 2.14). If you want to edit a
PowerPoint Show, open the show from within PowerPoint, that is, start
PowerPoint and choose “Open” from the File menu to open it.

Conclusion 31

T ETE|
e R ST e

Sl LT LT e — - el -
e ————
e meal

P RO B8 B | [t
) E i el

b hii-T (™ g 1
] £ b ol kil % LI

Figure 2.14. Saving a File As a PowerPoint Show

Conclusion

Now you have a basic understanding of the traditional interactive and mul-
timedia features of PowerPoint. You are no longer confined to creating linear
presentations that simply go from one slide to the next to the next. You have the
full power of buttons and hyperlinks to allow for any of the designs described in
Chapter 1 and, with Kiosk mode, you have complete control over where the user
goes within your presentation. Now that you have conquered the traditional in-
teractive multimedia features of PowerPoint, you are ready for the next chapter,

which will introduce you to the advanced scripting features available to you in
PowerPoint.

Exercises to Try

L Create a simple tutorial with a title slide, a menu slide, and four
content sections. Put a button on your title slide to go to the
menu slide. Link the menu to each of the content slides. Include
a button on each of the content slides to return to the menu. Put
your tutorial in Kiosk mode and save it as a PowerPoint Show.
See Figure 2.15.

Fractions Tutorial * Subirasting Fractiom

LUul'y (4l Shartud | * Ditviding Fractiom

Adding Fractions Subtracting Fractions
v I b BecHcen fuuimilpre @e v [P Iirttcnsn Foumbers are
i miema, bdd the bep el Bame, sebiracd the bp
[T L2 - ™ e
i 3 i+3 3 3 1 L |
L] L — = -
i 4 L | 4 .-l d L1 a
Multiplying Fractions Dividing Fractions
= lliultipty tha o mambers. = bnvert B dimor and
w0 multiply e Botbem muttiphy
niimiEER
1 § ixd B 510

] 8

Figure 2.15. Slides for Tutorial with Menu

U Create a simple multiple-choice quiz with three questions. Cre-
ate a slide for each question with buttons for right and wrong an-
swers. Wrong-answer buttons should link to a slide that says
“Wrong” and has a button that returns to the “Last Slide
Viewed.” Right-answer buttons should link to the next question
and play a positive sound (such as applause or your recorded
voice saying “good job”) . Put your quiz in Kiosk mode and save
it as a PowerPoint Show.

43

Introducing Visual Basic

Introduction

for Applications

In Chapter 2 you learned some of the traditional multimedia features of
PowerPoint, such as pictures, sounds, hyperlinks, and action buttons. These are
important features of PowerPoint, and even if you become a VBA expert, you
will use these features over and over again. But you might be wondering what
VBA is and what it can do for you. This chapter explains what VBA is, describes
how VBA fits into the world of object-oriented computer languages, and re-
lieves your concerns about VBA and computer viruses.

Vocabulary
¢ Class

e Inheritance

* Macro virus protection
* Method

* Object

* Object-oriented
programming language

* OOP

e Parameter
* Property

* VBA

* Virus

* Visual Basic for Applications

34 Introducing Visual Basic for Applications

What Is Visual Basic for Applications?

Visual Basic for Applications (VBA) is a very powerful object-oriented
programming language that can be used to add to the functionality of Microsoft
Office applications, including Microsoft PowerPoint. You might have gotten
stuck on the phrase “powerful object-oriented programming language.” Don’t
let that bother you. Your car is a powerful electrical, mechanical, and thermody-
namic transportation device, but you can still drive (or if you are too young to
drive, your parents can drive, so how hard can it be?). Later in this chapter,
you’ll learn what it means to be a “powerful object-oriented programming lan-
guage,” but remember the premise of this book: You are learning to be a scripter,
not a programmer. Just like you don’t need to understand the thermodynamics of
the combustion engine to drive your car, you can become a scripter without a
degree in computer science.

Originally, PowerPoint was a presentation tool, used by many to enhance
lectures, sometimes making them better and sometimes making them worse.
PowerPoint served as an automated overhead projector. Slides could be changed
with the click of a button. Pictures and sounds could be added. Text could fly
onto the screen as points were introduced, saving the need for a piece of paper to
cover half the projector (and annoy half the audience).

Enter PowerPoint 97. Starting with that version, PowerPoint was trans-
formed from a presentation tool to an interactive tool. While it still can be used
as a presentation tool, it becomes more powerful as an interactive tool. As you
saw in Chapter 2, in addition to multimedia elements (pictures, sounds, videos),
newer versions of PowerPoint allow interactive elements, including buttons and
hyperlinks. You can

* add buttons to control navigation (start your slide show with a menu,
for example, rather than requiring linear navigation, from slide to
slide to slide);

* jump to other slide shows, files, or Web pages; and

* create rudimentary multiple-choice tests (clicking on a button with
the correct answer takes the student to a slide that says “correct,” for
example).

While PowerPoint’s interactivity is very powerful and useful, it is also very
limited. VBA extends this to nearly unlimited dimensions. With VBA, you can
change the content and appearance of slides based on student input, you can ask
for and process typed input, you can add additional slides, you can hide and
show graphics, and much more. You will learn the basics of scripting in VBA
beginning in Chapter 4. First, we’ll pause to learn a little bit about what ob-
ject-oriented programming is.

What Is an Object-Oriented Programming Language? 35

Note that the VBA features of PowerPoint work in all ver-
sions of PowerPoint starting with version 97, but they do
not work in the PowerPoint Viewer or when saved as a
Web page. PowerPoint presentations that use VBA can be
placed on the Web, but they must be downloaded from the
Web and run directly on a machine with a full version of
PowerPoint.

[L

What Is an Object-Oriented Programming Language?

First of all, VBA is a programming language. Don’t let this scare you . . .
too much. Having a background in computer science and programming would
be helpful, and you will not be able to take full advantage of VBA without be-
coming (at least) a novice programmer. However, this book guides you through
some of the basic things you might want to do with VBA without the need of any
programming background.

To top it off, VBA isn’t just an ordinary programming language; it is an ob-
ject-oriented programming (OOP) language. An OOP language has three key
features: classes, objects, and methods. Classes are types of things, objects are
specific things, and methods are what you do to things. For example, there is a
class of things called “phone books.” The specific phone book on my desk is an
object. I can do many things with a phone book, such as look up a person’s phone
number, turn to a page, put it on a chair for my four-year-old daughter to sit on,
etc. All the things that I could do to the phone book are methods. If we convert
this phone book example to computerese (computerese is not a real computer
language, but it plays one on TV), we might have the following:

Dim myPhoneBook As PhoneBook
myPhoneBook . LookUpPerson ("John Smith")

The first line says that myPhoneBook is a specific instance (an object) of
the class PhoneBook. This tells us that all the things we can do with phone
books in general can be done to this specific phone book. Since one of the things
that we can do with phone books is look up a specific person, we do that on the
second line. myPhoneBook . LookUpPerson says that for this specific phone
book, call the method (do the action) LookUpPerson. Since we need to know
which person to look up, this method takes an argument (information that the
method needs to complete its job). That information is put in parentheses after
the method. Since the information is text, we put it in quotes, too.

Computers are very picky. All the details are important. The dot (that pe-
riod between myPhoneBook and LookUpPerson) is necessary to tell the com-
puter that LookUpPerson is the thing to do (method) with the object
myPhoneBook. The parentheses tell the computer that the stuff inside is impor-
tant information (parameters) for knowing what the method should do. The

36 Introducing Visual Basic for Applications

quotes tell the computer that what’s inside them is text. Leave out any detail, and
nothing will work.

Another critical point about objects is that they can have parts. Think about
our phone book example. Think about what parts there are to a phone book. Here
are a few examples: the cover, pages, the blue pages (for government listings),
and the phone company information (such as how to contact the phone company
if your phone stops working). Each of these parts is its own object (a particular
page might be an example of the class Page, or a range of pages might be an ex-
ample of the class Pages). You might access the phone book by accessing a part
of the book. For example,

myPhoneBook . Pages.TurnToTheNextPage

might take the set of pages and turn them to the next one, so if you are on page
57, for example, you will find yourself on page 59 (if the page is two-sided).
Now the dot is serving two purposes. The first dot says that Pages is a part of the
object myPhoneBook, and the second dot tells the computer to do the thing (run
the method) TurnToTheNextPage, which is something that can be done to
Pages.

While some parts of an object are other objects, some parts are properties.
For example, a phone book has a color, a number of pages, and a thickness. So
for example, if [wanted to see how thick my phone book is, I might look at that

property:

myPhoneBook. thickness

or I might want to add two thicknesses together to get something tall enough for
my daughter to sit on and be able to reach the table:

myPhoneBook.thickness + myNeighborsPhoneBook.thickness

Finally, we turn to inheritance, and then you won’t be an expert in OOP, but
you will be able to play one on TV. We have been looking at the class
PhoneBook. Well, isn’t a phone book just a specific type of book? Therefore,
we could think of a PhoneBook as a type of Book that inherits all the properties
and methods from books. The object I am working with is still myPhoneBook,
but it is not only a member of the class PhoneBook, it is (since PhoneBook is a
subclass of Book) also a member of the class Book. Everything you can do with
a book, in general, you can do with a phone book . . . and more. For example, you
can turn pages in a book, look at the cover, weigh down papers, etc. You can also
look up a phone number or find information about area codes in a phone book,
but not in all books.

Now, with this basic understanding of objects, classes, and methods, you
will be able to understand the basics of OOP when these terms come up.

Before leaving OOP, think about how it relates to PowerPoint. PowerPoint
has many objects and classes. A typical PowerPoint presentation contains many

VBA and Viruses 37

slides. Slides! That’s a class. As a class, S1ides is the collection of all the indi-
vidual slides in a presentation. The set of slides in your specific presentation is
an object. That set of slides contains individual slides. A slide might contain
many objects or shapes. Think about a slide with a text box, a piece of clip art,
and a button. Perhaps these are shapes 1, 2, and 3 on the slide. They each have
many properties, such as whether or not they are visible. Because a text box, a
piece of clip art, and a button are all members of the class Shape and shapes may
be visible or not, we can look at the Visible property of these objects. For
example:

ActivePresentation.Slides (3) .Shapes(2) .Visible

This looks at the current PowerPoint presentation Act ivePresentation. That
presentation contains slides ActivePresentation.Slides. We want to look
at the third slide (that’s the 3 in parentheses), and we want to look at the second
shape on that slide (Shapes (2)). Finally, that shape, like all shapes, can be visi-
ble or not, so we want to look at the Visible property. So, what that small piece
of code says is: Look at the Visible property of the second shape, which is one
of the shapes, on the third slide, which is one of the slides, in the current
PowerPoint presentation. It’s a good thing we can use VBA because we would
get pretty tired typing out long sentences like that.

If you don’t understand the details of object-oriented programming languages,
don’t worry. Because you are learning to be a scripter, you will be able to pick it up
as you go along. The more you understand, the easier it will be to change scripts to
suit your purposes, but to start, you only need to type the scripts you see.

VBA and Viruses

VBA is a powerful programming environment. It can do almost anything
that can be done to your computer, including creating, deleting, or modifying
files. It can access other programs, such as Outlook Express (an e-mail pro-
gram). These features have been used to create and spread computer viruses and
worms that destroy files and spread them to other computers. You could, for ex-
ample, write a VBA program that deletes some important system files (making it
impossible for the computer to start) and mails itself to others through e-mail.
This has been done, and it affects you in two ways. First, once you learn enough
VBA (and it doesn’t take that much), you could do this. Don’t!!! Don’t even play
around with this. It is inappropriate, unethical, and in many cases illegal.

Second, and more relevant to you (since I’'m sure you wouldn’t entertain
the thought of writing viruses), some virus protection systems might look
askance at your legitimate work. The thing you are most likely to see is
PowerPoint’s macro protection. This can be found in different places in different
versions of PowerPoint. In all versions of PowerPoint, you start by going to the
Tools menu and choosing “Options . .. ”.

38 Introducing Visual Basic for Applications

In older versions of PowerPoint (including PowerPoint 97), under the Gen-
eral tab, there is a checkbox for Macro virus protection. If this is checked, you
will be asked if it is OK to enable macros every time you run a PowerPoint slide
show or even open a PowerPoint project that contains anything done with VBA
(see Figure 3.1).

m

I eyt ok oriaii rosiroi,

Ribgrro, iy CTILany ewiipel. B mbwiey gy © (alle swcro, bl F e
PR B ST ES, PO Tt e Soare RFKOOFHTY.

e] | wevpon | __wreew |

Figure 3.1. Do You Want to Enable Macros?

In newer versions of PowerPoint (including PowerPoint 2002), under the
Security tab, there is a button for “Macro security . . . ” (see Figure 3.2).

o | o |

Figure 3.2. Security Tab Under Options

Click this button to bring up the Macro Security dialog box (see Figure 3.3).

You can choose high, medium, or low security. If you choose high security,
you will not be able to use VBA. Medium security is probably your best choice.
You will be able to run PowerPoint presentations that contain VBA, but you will
be asked if you want to enable macros before PowerPoint opens the presentation
(see Figure 3.1). With low security, you will be able to open all PowerPoint pre-
sentations without being asked if you want to enable macros.

Exercises to Try 39

Be careful when you click on the “Enable Macros” button. If the slide show
was written by you or someone you trust, choose Enable Macros. If not, itis gen-
erally a good idea to choose Disable Macros because some unscrupulous person
might have included a virus in your file. Your students, when running your pre-
sentation, will have to choose Enable Macros.

[y e | prumsa e |

1™ g ey migrec pracrm dooe s ocamey = pe
Wi, e - s

L Rhees T LS P P O SO N e DR Ty
s mCT.

17 i S e e CERT WA A, S e ek
T A VT | T TR ey o ey e
AA E W) srte e reided, o fo aw o ol
i O e e

o] e

Figure 3.3. Macro Security Dialog Box

Conclusion

You now have a basic understanding of what VBA is and how it fits into the
world of object-oriented programming languages. You also know the relation-
ship between VBA scripts and macro viruses (although you would never use
VBA for nefarious purposes). You are now ready to learn how to write VBA
scripts.

Exercises to Try

U If you use a newer version of PowerPoint, set your macro secu-
rity to medium or low. If you use an older version of PowerPoint,
enable macro protection.

O Look at a simple PowerPoint presentation that you have created
in the past. Using pencil and paper (or a drawing program or an
organization chart slide in PowerPoint), try to draw a chart of all
the parts of the presentation. Put the presentation at the top (you
can call it ActivePresentation and put the collection of

40 Introducing Visual Basic for Applications

slides below that. Under the collection of slides, put each of your
individual slides (if you chose a big presentation, just pick the
first three or four slides). Under each slide, put the various ob-
jects on the slide. See Figure 3.4 if you are having trouble getting
started. Don’t worry if you don’t get all the objects; the purpose
of this exercise is to begin to think about all the objects that you
will be able to manipulate with VBA.

[BB P o I

|

:"'" e] l.h.'.-' > 'i-'.'.n-'.t.'l"- 1.--]

————

[o

il
] ['h:-t =S]

| T [HL -:-.--.*_.ﬂ.:l {H-..-.'— BLton I | Picturs
A Qrands

Figure 3.4. Example Chart of the Parts of a PowerPoint Presentation

L Pick one object from one slide and list as many properties as you
can. The purpose of this exercise is not to get a detailed list of ev-
erything about a presentation or an individual object but to start
thinking about how a presentation is organized and what proper-
ties objects might have for you to manipulate. Don’t worry if you
can’t think of all the properties (objects contain properties about
which you don’t even know) or even if your properties don’t
match PowerPoint’s “official” properties. To get you started,
think about a rectangle’s size, location, and color. You might
also select the object within PowerPoint and try to see what prop-
erties you can change (click on the object to select it, go to the
Format menu, and choose the last item in the menu, which will
be the type of object you are formatting, i.e., “Picture” if the ob-
ject is a picture, “Text Object” if the object is a text object,
“AutoShape” if the object is a drawn shape, etc.). Anything you
can change with traditional PowerPoint features you will be able
to change with VBA.

14

Getting Started with VBA

Introduction

In previous chapters you learned some basic features of PowerPoint and
what VBA is. This chapter shows you how to access the VBA Editor, how to
write simple scripts in VBA, how to attach those scripts to buttons and objects,
and how to protect your scripts with a password. When you have completed this
chapter, you will know the mechanics of writing a script and using it in a
PowerPoint presentation, and you will be ready to learn how to do some interest-
ing things with VBA.

Vocabulary
* Action settings * Module
e Add Text e MsgBox
¢ Button e Password
e Macro ¢ Visual Basic Editor

Accessing the VBA Editor

Once you start a PowerPoint project, you get into VBA by holding down
the ALT key and hitting the F11 key (option-F11 on a Macintosh). Alterna-
tively, go to the Tools menu, choose “Macro,” and choose “Visual Basic Editor”
from the flyout menu. At this point, you should see two small windows on the

42 Getting Started with VBA

left (the Project window and the Properties window) and a large blank area on
the right of the screen. Choose “Module” from the Insert menu, and you will get
a window in the blank area (see Figure 4.1). The window probably will be
named “Modulel.” This is where you will write your procedures.

Fin Eon es pupn Fomer Detin B Toshy Sddied ndos Hels
B-3-Eisned a8 pe!HeeWss 5 Lnl,ﬂll'l. ~

Om .
B yAPEs | [Frievent

5 WAL
o it

I 1|‘|l-lllllh ['I.iuﬂllli

L .

apratuts: | g o |

=31

Figure 4.1. Insert Modulel

While we are here, let’s write one. Type the following:

Sub SayHello()
MsgBox ("Hello™")
End Sub

Note that the computer will type the “End Sub” for you. Now go to the Run
menu, and select “Run Sub/UserForm.” You should get a message box that says
Hello (see Figure 4.2).

Microsnft PowerEoant E

Figure 4.2. MsgBox Says “Hello”

Tying Your VBA Script to a PowerPoint Button 43

Congratulations! You have just written and executed your first VBA proce-
dure. Click the OK button, and you can do some more.

Help! I’ve Lost My Windows

You’re adventurous. You like to play around. You were trying some things,
and you lost your Project window in the VBA Editor. No problem. Keep playing
around; it is the best way to learn. Oh yeah, and you want to get your Project win-
dow back. Simply go to the View menu and choose “Project Explorer.” What’s
that? You lost your module window, too? You are adventurous. Just dou-
ble-click on Modulel in the Project Window, as shown in Figure 4.3.

- B vRAProject [Presentation)
— =5 Modusles)
*5 ModulE

Figure 4.3. Project Window with Modulel

If you don’t see Modulel in the Project window, but you do see Modules, you
should have a + next to Modules; click on that and you should see Modulel. If
you don’t see Modules, but you do see VBAProject, you should have a + next to
VBAProject; click on that to see Modules, click on the + next to Modules to see
Modulel, and double-click on Modulel to see the Modulel window. Finally, if
you don’t see Modules, and you don’t see a + next to VBA Project, then you
don’t have a module (either you never inserted it, or you deleted it). Go to the In-
sert menu, and choose “Module,” and you should be OK.

If you accidentally add more than one module, your modules will be num-
bered consecutively (Modulel, Module2, Module3, . . .). While it is not a prob-
lem to have more than one module, you should avoid confusion by keeping all
your scripts in the same module. Delete any extra modules by clicking on them
in the Project window and choosing “Delete Module” from the File menu.

Tying Your VBA Script to a PowerPoint Button

Now that you have a script written, you will want to access it from within
PowerPoint. You can do this by associating the script with a button (or any draw-
ing shape that you want).

44 Getting Started with VBA

Go to PowerPoint (either choose it from the Task Bar or close the Visual
Basic Editor by clicking on the #] in the upper right-hand corner of the screen;
on a Macintosh, choose “Close and Return to Microsoft PowerPoint” from the
File menu). Don’t worry about losing your VBA scripts when you close the edi-
tor. Your VBA scripts are part of your PowerPoint presentation. When you save
your presentation, your scripts will be saved with it. When you return to the edi-
tor, your scripts will still be there.

If you don’t have a slide, create a blank slide. Don’t worry about what kind
of slide it is or what is on it. Go to the Slide Show menu and select “Action But-
tons.” From the flyout menu, pick any button (the blank one is fine because you
can add text to it later). See Figure 4.4 to see how to add a blank action button.

ot Toale | Shds Shew | Wirdow Help
Ll AL iow Show FY
Pt @S¢ UpShow

ﬂ-ﬁ' Befearse Tinings
Record Harmshon
Lhline Broadons! ¥
.I. Aaian Bilons !:b]

fartaan Resingn

Anmetion Schemss..

Crsinm Asimsdian

| gl

'
)

| Shida Trantiicn
' Hidha Shide
| Cusiam Ehows

Figure 4.4. Getting a Blank Action Button

You can draw the button by dragging the mouse to form the button or just
clicking where you want the button to appear on the slide. Once you let go of the
mouse you will be presented with the Actions Settings dialog box (see Figure
4.5). Choose Run Macro, and select SayHello (the name of the procedure you
just wrote) as the macro to run. Click OK.

Buttons are only active in Slide Show View, so go to Slide Show View
(choose “View Show” from the Slide Show menu or click on the Slide Show
icon T in the lower left corner of the screen). Now, click on your button, and
you should get the same “Hello” message you got earlier when running your
procedure (see Figure 4.2, page 42).

Tying Your VBA Script to Any Object 45

ActionSattings ————— FIH|

smion: an click

ey

IFH_I_-'-_
| Hrperie g

£ | o

Figure 4.5. Action Settings Dialog Box

Now go back to Edit View (also known as Normal View) by hitting the Es-
cape key on your keyboard. To finish your button, right-click (control click on a
Macintosh) on it and choose “Add Text” from the flyout menu. You can now add
text to describe what your button does. This text will show up on the button, so
users will know what they are clicking when they click your button.

Tying Your VBA Script to Any Object

You can tie your VBA script to any object you want, not just a button. Use
the drawing tools to draw a shape (there are several interesting ones from which
to choose in the AutoShapes menu of the Draw toolbar). Once you have drawn
the shape, click on it to select it. Now choose “Action Settings” from the Slide
Show menu. You will get the same dialog box shown in Figure 4.5, and you can
choose Run Macro and the SayHello macro, exactly as you did above. Now you
can click on the drawn object just like you can click on the button.

This method works for any PowerPoint object, not just the ones you draw
yourself. You can insert clip art and make it clickable by assigning Action Set-
tings (just like you do to shapes you draw yourself) to run your script. You can
copy and paste pictures from other sources (such as the Web). You can even
make text in your slide clickable by highlighting the text and choosing “Action
Settings” from the Slide Show menu.

46 Getting Started with VBA

Changing a Button

You might want to make three types of changes to your button: changing
the PowerPoint attributes of a button, such as size shape, or text; changing which
script a button uses (including adding a script if the button isn’t tied to one); and
changing what the script does that the button uses.

To change the attributes of a button, you would use traditional PowerPoint
features. For example, you can change the text in the button by right-clicking on
the button and choosing “Edit Text” (“Add Text” if the button doesn’t already
have any text) from the flyout menu. You can use any of the drawing tools to
change the size, shape, color, etc., of the button.

If you created your button and didn’t tie it to a script, you can right-click on
the button and choose “Action Settings” from the flyout menu. Alternatively,
you can left-click on the button to select it, go to the Slide Show menu, and
choose “Action Settings.” Once in the Action Settings dialog box (see Figure
4.5, page 45), you can choose Run Macro. If you had associated your button with
the wrong script, you can change which script the button runs in the Action Set-
tings dialog box. If you have more than one script, you can choose a different
script from the pull-down menu under Run Macro. If you don’t want your button
to run any script, click None in the Action Settings dialog box.

@ Beware! If you have added text to your button, it is easy to
N\ /

accidentally link the text rather than the button. Generally,
you want the entire button to activate your script, not just
the text inside the button. You can tell that you have linked
the text because PowerPoint will generally underline
linked text. To ensure that you link the entire button, left
click on the button to select it. Be sure that you do not have
a cursor flashing in the text. If you do, left click anywhere
on the button that is outside of the text. At this point you
can either choose “Action Settings” from the Slide Show
menu or right-click on the border of your button and
choose “Action Settings” from the flyout menu. Because
PowerPoint allows you to link text separately from a but-
ton, you easily can get confused. If you have linked the text
and you later check to see which script the button activates,
your Action Settings dialog box will indicate “None.” Be
careful to always link the entire button to avoid this
confusion.

Securing Your VBA Script from Prying Eyes 47

Securing Your VBA Script from Prying Eyes

In Chapter 2 we discussed Kiosk mode. By using Kiosk mode, you have put
in place some security. Students will not be able to jump to any slide or skip a
slide using the keyboard. However, you might put something in your VBA code
that you don’t want them to see. For example, if you are writing a quiz, your
VBA code will include the answers so it can tell the students when they got the
right and wrong answers. It is very easy to protect your VBA code with a pass-
word. While in the VBA Editor (where you edit the VBA code, not where you
edit the PowerPoint slides), select “VBAProject Properties . . . ” from the Tools
menu and click on the Protection tab (see Figure 4.6).

WA e - Projoct Propssbes

[+ ok et lor gty

ey B v Cr i pProgeie

I

Figure 4.6. Setting a Password

Check the box that is labeled “Lock project for viewing,” type a password
in the password box, and type the same password in the “Confirm password”
box. Now, whenever you want to view or edit the VBA code, you will be asked
to type this password. Don’t forget it, or you will not be able to access your own
project.

Note that in newer versions of PowerPoint (beginning with 2002), you can
set a password to access your file. If you choose to use this, beware of two
things: (1) Anyone viewing your presentation will need the password, and (2)
anyone using a version of PowerPoint earlier than 2002 will not be able to view
your presentation.

48 Getting Started with VBA

Conclusion

You now have control over navigation, you know how to lock your scripts
with a password, and you know the basics of writing VBA scripts. You are ready
to learn some more sophisticated scripts to promote interactivity.

Exercises to Try

'l wan dhae firsd proeskdoni -
W ol 1o 1ha ol b U ahind State? Wt a1 117
wampls Toai
B sz] BN EE
L

Figure 4.7. Slides for a Simple Quiz in the Chapter 4 Exercise

U Create a small multiple-choice quiz in PowerPoint. Include a ti-
tle slide and two question slides with two answers for each ques-
tion: one correct and one incorrect. The questions should be in a
text object or the title area of a title only slide. The answers
should be buttons.

& Use Add Text to add the text for the correct and incorrect an-
swers to each question.

t¥[> Put a button on each slide to advance to the next slide.
Q{> Put a button on the last slide to return to the title slide.

U Write a VBA script that is identical to SayHello, except name it
RightAnswer. Replace the text “Hello” with the text “Good job.”

U Write another VBA script that is identical to SayHello, except
name it WrongAnswer. Replace the text “Hello” with the text
“Try to do better next time.”

G Link your answer buttons to the Right Answer and WrongAnswer
scripts.

L Save your file and run it in Slide Show View.

U Add a password to protect the VBA from being seen.

45

Let’s Get Scripting

Introduction

In Chapter 4 you learned how to access the VBA Editor and write a simple
script. In this chapter you will begin to learn a few more basic scripts, including
some scripts that allow you to get input from the user. In the process, you will
learn a little bit about variables, which are used to store information, so you can
use it when you give feedback. What good would it be to ask for the user’s name,
if you don’t use it as part of the feedback? You will get a preview of how to use
some of the same scripts to get other kinds of input, such as answers to short-
answer questions. Finally, in this chapter you will learn some details about run-
ning your scripts and associating them with buttons, including how to associate a
button with more than one script.

Vocabulary
* Ampersand (&) * String
¢ Declare e Underscore
* Dim e Variable
* InputBox * Variable type

* Scope

50 Let’s Get Scripting

Variables and Getting Input

Earlier, you used a MsgBox to pop up a message on the screen. You can use
a similar box to get input from your students. The only difference is that the new
dialog box will have a space for your students to type something. We’ll start with
something simple: asking for the student’s name.

Sub YourName ()

userName InputBox (Prompt:="Type your name", _
Title:="Input Name")
End Sub

There are a few important things about this simple procedure. First, pay at-
tention to the space and underscore at the end of the line. The last three charac-
ters on the second line are comma, space, and underscore. Without the space, the
computer won’t recognize the underscore that follows. The underscore is a spe-
cial VBA character that tells VBA that what is on the next line is part of this line.
Therefore that entire line could have been written on one line without the
underscore:

userName = InputBox (Prompt:="Type your name", Title:="Input Name")

The underscore simply allows you to divide long lines so you don’t have to
scroll to the right to see what is on each line. Feel free to write long lines on one
line or divide them up among several lines as you see fit.

The next thing that is important about this small piece of code is that it uses
avariable: userName. Since we don’t do anything with the variable at this point,
it is not terribly interesting, but we should note a few things about variables.
Variables are places to store information. You can think of them as boxes in the
computer’s memory. Unlike algebraic variables, which represent one (or more
than one) specific, unchanging value in an equation or series of equations, com-
puter variables change values. That is, you can take something out of a box and
put something else into the box. In algebra, the equation

X =x+ 1

would not make any sense. In the computer, it makes perfect sense for two reasons:

1. While the variable x can only hold one value at a time, that value can
change. At one time x might hold the value 7, and a moment later, x
might hold the value 8.

2. The equal sign (=) is not a statement of equality. It is an assignment
operator. It says, take the value on the right side and store it in the
variable named on the left side. Therefore, the above equation is not a
statement of algebraic fact; it is an action. The part on the right (x + 1)
says, find what the value of x is and add one toit; the rest (x =)says,

Variable Declarations 51

store that value in x. That is, if x was 7, it will now be 8. Using the
box analogy, it says, look in the box we call “x,” add one to what you
find there, and put the result back in the box.

In the YourName procedure, we have used the variable userName. What
we have said is: Take whatever the user types in the InputBox and putitinto a
variable called userName. Later, we will want to use the name (to say, for exam-
ple, “Good job, Ella”) so we will get it out of the userName box when we are
ready.

' Note that InputBox does not work properly in
® PowerPoint 98 for the Macintosh. It works fine in all later
Macintosh versions (PowerPoint 2001 and later) and in all
Windows versions (PowerPoint 97 and later). If you are
working in PowerPoint 98, you should probably upgrade
to a later version. In the meantime, you can still work with
the InputBox procedure. This is only a workaround and
is not acceptable to give to students. If you create a button
that uses an InputBox, the computer seems to freeze
(your cursor changes to the watch). What is actually hap-
pening is that the computer has displayed the dialog for the
InputBox where you can’t see it. It is simply waiting for
you to type your input. You can’t see the box, you can’t see
the question, and you can’t see the answer you type, but
you can type an answer and hit the Return key when you
are done. Fortunately, this does not affect Windows at all,
and it only affects one version of PowerPoint for the
Macintosh, and you can upgrade to a newer version that
works fine.

Variable Declarations

For a variable to be useful, you often need to declare it. Although it is not
necessary to declare all variables, it is good practice to do so. Declaring a vari-
able does two things for you: It tells the computer what procedures are allowed
to know about the variable (scope), and it tells the computer what kind of infor-
mation the variable can hold (type). Declaring a variable is very easy. You do it
with the Dim statement:

Dim userName

This line tells the computer that you want a box called userName to store some
information (see Figure 5.1, page 52).

52 Let’s Get Scripting

Figure 5.1. A Box Called userName

@ Beware! All Dim statements must go together at the top of
/

your module (or right after the Sub line in a procedure).
Never put a Dim statement between procedures. If you add
a new procedure that needs a new variable, put the proce-
dure where you want, and put the Dim statement for the
variable with the other Dim statements at the beginning of
the module.

The most important part about the Dim statement is where to put it. You
have two choices: You can put it at the beginning of your procedure (right after
the Sub statement) or at the beginning of your module (before any Sub state-
ments). If you put it any place else, it will not work. While programmers have
lots of good reasons to put Dim statements in procedures, we are scripters, so for
the purposes of this book, we will put most of our Dim statements at the begin-
ning of the module. A Dim statement at the beginning of a module means that
every procedure in the module can access that variable. That is, the scope of the
variable is the entire module.

Alternatively, if you put the Dim statement at the beginning of the proce-
dure, only that procedure can use the variable; that is, the scope of the variable is
the procedure. For the YourName procedure, it would be pretty silly to create
the userName variable so that only YourName could use it. If we did that,
when we add a second procedure (such as the DoingWell procedure to tell the
user how well he or she is doing), we won’t be able to use the name typed by the
user. That is, we would be stuck saying “Good job” instead of “Good job, Ada.”
Therefore, we want to add a Dim statement at the beginning of the module:

Variable Types 53

Dim userName

Sub YourName ()

userName InputBox (Prompt:="Type your name",
Title:="Input Name")
End Sub

Just be sure that the Dim statement, along with all other Dim statements, is the
first thing in your module regardless of where in the module the YourName pro-
cedure is.

Variable Types

Variables are of certain types. That is, certain variables can hold certain
kinds of information. If you don’t tell the computer what kind of information the
variable is holding in advance, it will figure it out. In the YourName procedure,
the function InputBox always returns a variable of type String (a String is
text), so VBA will figure out that userName is a String. However, it is a good
idea to be explicit and tell the computer that you want userName to be of type
String. You can do this by changing the earlier Dim statement:

Dim userName As String

This Dim statement not only tells the computer that we want a variable called
userName, but it also tells it what kind of information that variable can hold (us-
ing our box analogy, it tells it the size and shape of the box). In this case, our
variable will hold a String (i.e., text) of up to 65,536 characters long.

Note that when you type a space after As, most versions of the VBA editor
will try to suggest things for you to type with a little box that pops up (see Figure
5.2).

Cim ‘u=eriams Aa
8l Action Seting -
& Action Seftings
& Addin
& Adding
& Adustrents
& aramganSehaaor
B anmatanBehnanrs -

Figure 5.2. Variable Type Pop-Up Box

This box contains all the things that you can type now. Boxes like this will pop
up frequently. If you know what you want to type, just ignore the box. If you're
not sure what you want to type, scroll through the list to see the possibilities. If
you find what you want on the list, you can either type it yourself or double-click

54 Let’s Get Scripting

on it in the box. When you double-click it will appear just as if you typed it, ex-
cept that the computer will never spell it wrong.

For Dim userName As, you'll see all the types of things that userName
can contain. There are about 300 of them, but there are just a few that you will
care about now. Common types you will use are:

Boolean True or False values

Integer Any integer from —32,768 to 32,767

Long Any integer from —2,147,483,648 to 2,147,483,647

Shape Any PowerPoint shape (such as those things that can be drawn
with the Draw tools)

Single Non-integers (i.e., numbers with something after the decimal
point, such as 3.14 and 98.6)

String Any text up to 65,536 characters long

Object Any object

Now, we are ready to put it all together with a Dim statement and two pro-
cedures:

Dim userName As String

Sub YourName ()

userName InputBox (prompt:="Type your name", _
Title:="Input Name")
End Sub

Sub DoingWell ()
MsgBox ("You are doing well, " & userName)
End Sub

The first procedure could be associated with a button on the first slide, and
the second procedure could be associated with a button on a later slide. The re-
sult would be that when the first button was pressed, the student would be asked
to “Type your name.” If the student types “Ada,” when the second button is
pressed, a message would pop up on the screen saying, “You are doing well,
Ada.” The & (ampersand) character used in the MsgBox procedure is for concat-
enation of strings; i.e., the two strings “You are doing well,” and whatever is
stored in the variable userName (in this case “Ada”) are joined together to
make one string, “You are doing well, Ada,” which is displayed in the box on the
screen.

Of course this is a simple example, but it is really easy to turn it into a multi-
ple-choice quiz with feedback that uses the student’s name. Figure 5.3 shows the
VBA script and slides for a short quiz. The arrows show which button should be
connected to which procedure. The Next buttons and Quit button do not use

Force the Student to Type Something 55

VBA; they use traditional hyperlinks (see Chapter 2) for Next Slide and End

Show. If you have forgotten how to tie your buttons to a procedure, look back in
Chapter 4.

Welcoms io ik

frim myrEaas
Phile WoLiC PeamE)
mntiar = Dogaitf8un{proesd - ~"THpE P naes",

Wheo was the first presidem Titlei="lopst Wana”|
I n Eri b
ol the Uaihied Siaces” = g
r Hagbon ("Tog apw doieg w=ll, " & WesiliaEni
W Ena Mab
* S Ly Peenr Lydi
Bhglr ["Tor 24 &G SSEtar BEwt LiEs, T @ e

s n

M = - s o

Figure 5.3. Simple Quiz

Force the Student to Type Something

Now, you have a nice procedure to ask for a name, but some students will
not want to type their names. We have ways of making them type. Let’s expand
our procedure to what is shown in Figure 5.4 (page 55).

This example is a little more complicated than necessary (i.e., the same
thing could have been done with four or five lines of code), but the complexity
makes it easier to change. As a scripter, you always want to know what you can
change. But first, let’s try to understand what the procedure is doing. If you don’t
understand it all, don’t worry; you can type the examples exactly as they are
without understanding anything, and you can make small changes without
understanding very much.

You should recognize the line beginning with userName =. That is the core
of our old YourName procedure. The rest of the procedure is designed to figure
out if the student has typed anything and, if not, ask the student again for a name.

56 Let’s Get Scripting

a8 Microsnll Visusd Dasic - Farooppd - [Module) [Codo}]

S Pla Et Vew est Fomes [ubig Fum Tooh Addis Window Help
- F

[=] S E W s i e NS RE

[-H,'.--nall 3 1|Dl-|:h!l||u||.ll
Dim us=phamse
Al YourRass{)

Dim donE A8 BEosolsan

|l

dane = Talas
'l 1 i w -
While Hor done
usscrinas = InpUtEoX {prospo e=™Type YouUr nEsa®,

Titlei="Tnput Hame")

I uamphHa=es = =% Then
done = Falas

Elas =
done = True

End If

B

S o

Figure 5.4. Ask For and Require a Name

To decide if the student has typed anything, we use a variable named done.
When done is True, the user has typed something. When done is False, the
user hasn’t typed anything. You might notice that we declared this variable in-
side the procedure YourName. This means that only YourName will know about
done (it would work just fine to declare done at the beginning of the module
right before or after the Dim statement for userName). done is declared as
Boolean because Boolean variables can be True or False, and we are either
done or we are not done.

We start by setting the value of done to False (because the student surely
has not typed a name before we even have asked). Next, we use a while loop
(see Chapter 8 for more about While loops). This is a method of doing some-
thing over and over again as long as we want to keep going. We know we want to
keep going if whatever comes after the word While is True. Not False isthe
same thing as True, so if done is False, Not done is True, and we keep go-
ing. In English, we keep going as long as we are not done.

How do we know when we are done? That is where the T£ statement comes
in. We check to see what the student has typed (as stored in userName) and
compare that to "" (that is two double quotes with nothing between them, also
known as the empty string or nothing). If the student typed nothing (If
username = "" Then) then we are not done, so we set done to False (done
= False); that is, we put the value False in the variable named done. Other-
wise (E1lse) the student must have typed something, so we are done, and we set

What Else? A Personal Response and a Short-Answer Question 57

done to True (done = True). The Wend just says that we are at the end of our
While loop. Everything between the while and Wend will be executed over
and over again until we are done (in this case, until the student types something).

If the user types nothing, the If statement will set done to False, and loop
back up to the while statement. The while statement will see that we are not
done, so we should keep going and execute the stuff between while and Wend
again. If the user types something, the If statement will set done to True and
loop back up to the while statement. The While statement will see that we are
done and move to whatever is after the wend (we could do something else after
the Wwend, but we don’t in this example).

Two things to note:

1. Students will be forced to type something, but that something could
be anything: a single space, a dirty word, a period, etc.

2. Students will only be forced to type something if they click on the
button associated with this script.

In later chapters, you’ll learn how to check what was typed to make sure it
is OK, as well as how to force the student to click on the button (don’t worry; it
doesn’t involve physical force or shock therapy).

What Else? A Personal Response and a
Short-Answer Question

Now that you have a basic script that responds to what the student typed, we
can extend it just a little to give a more personal response. Then with almost no
effort, we can change the script from asking for a name to asking for the answer
to a short-answer question.

The first step is to add E1seIf to the YourName procedure.

Sub YourName ()
Dim done As Boolean

done = False
While Not done
userName = InputBox (prompt:="Type your name", _
Title:="Input Name")
If userName = "" Then
done = False
ElseIf userName = "Emily" Then
MsgBox ("Finish your homework before doing this.")
done = False
Else
done = True
End If
Wend

End Sub

58 Let’s Get Scripting

After we ask the question about the student typing nothing, we ask one
more question. So first, we check to see if userName is nothing. If it isn’t, we
ask if userName is “Emily.” If userName isn’t nothing, and itisn’t Emily, then
we look at what comes after E1se. If userName is “Emily,” we have two things
to do: put up a message telling Emily to do her homework, and set done to
False. Because done is False (just like it would be if the student typed noth-
ing), we’ll ask for the name again.

This could be expanded to ask as many questions as you want by adding
more E1lseIf questions. Eachone could check for a different name (or an unac-
ceptable answer, like profanity) and respond appropriately. Note that ElseIf
does not have a space between “Else” and “If” while End If does have a space
between “End” and “If.”

Using the exact same structure, we can change this from asking for a stu-
dent’s name to asking for the answer to a question. The main structure of the
VBA looks like this:

Sub Question()
Dim done As Boolean

done = False
While Not done

answer = InputBox (prompt:="What color is the sky?", _
Title:="Question")

If answer = "" Then
done = False

ElseIf answer = "blue" Then

MsgBox ("Good job.")
done = True

Else
MsgBox ("Try Again.")
done = False
End If
Wend
End Sub

You should notice that this is almost identical to YourName, with the following
exceptions:

* We changed the name of the procedure; you can name procedures
anything you want as long as they make sense to you.

* We changed the name of the variable; you can name variables any-
thing you want as long as they make sense to you.

* We changed the text in the InputBox; as a scripter, you always
should look for text between quotes that you can change.

* We changed the text in the E1seIf line to check to compare what
was typed to the right answer; remember, as a scripter, you should be
looking to change the text for the question and the text for the an-
swer to whatever you want.

Calling a Procedure from Another Procedure 59

* We changed the done = False to done = True after ElseIf
and done = True to done = False after Else; this is because
you are done (done = True) when you get the right answer.

* Finally, we added some feedback. If what was typed wasn’t nothing
and it wasn’t the right answer, we pop up a MsgBox to tell the stu-
dent to try again.

Think about the small differences between the YourName and Question
procedures. As a scripter, you should think about ways to change a script to make it
do something different. Simply changing some text should be easy for you. Trans-
forming YourName into Question might be a bit difficult at this point, but with
practice, you should be able to find more and more things that you can change.

Running Your Scripts

Before we write any more procedures, you should be reminded how to run
procedures. There are three ways to run a procedure:

1. Select “Run Sub/UserForm” from the Run menu in the VBA Editor.

2. Associate your procedure with a button so it runs when the user clicks
on it in Slide Show View.

3. Call the procedure from another procedure.

Generally, we won’t use method 1. Although it will work for some of the
simple scripts we have written so far, it will not work for most of our scripts be-
cause we will design our scripts to be run in Slide Show View. When we choose
“Run Sub/UserForm,” we are not in Slide Show View.

Most of the time, we will use method 2, associate the procedure with a but-
ton. We did this at the beginning of Chapter 4. Remember that procedures aren’t
magic; they have to be told to run. The best way to tell them to run is to associate
them with a button and to click on that button in Slide Show View.

Sometimes we will want to use method 3. In this method we write one
script that includes the names of other scripts in it. Our button will be associated
with the first script, but when that script is run, the other scripts will run as well.
The next section describes this in more detail.

Calling a Procedure from Another Procedure

Not all procedures are tied directly to buttons. Many procedures are de-
signed to do part of what you want a button to do. These procedures are called
from other procedures. For example, let’s take two procedures we have already
written: YourName and DoingWell (for simplicity we’ll use our first
YourName procedure, but you could use any of the YourName procedures from
this chapter):

60 Let’s Get Scripting

Dim userName As String

Sub YourName ()
userName = InputBox (prompt:="Type your name",
Title:="Input Name")
End Sub

Sub DoingWell ()
MsgBox ("You are doing well, " & userName)
End Sub

You could associate a button with each of these procedures, so the users
click on the first button to type their names and (probably at some later point)
click on the other button to be told how well they are doing. What if we want to
praise them right away, to encourage them right after they have typed a name?
We could write another procedure that calls the two procedures above:

Sub YourNameWithPraise ()
YourName
DoingWell

End Sub

No buttons have to be associated with YourName or DoingWell. Create a but-
ton and associate it with YourNameWithPraise, and that is all you need. The
button will activate YourNameWithPraise. When YourNameWithPraise
starts to execute it will see the first line: YourName. That signals it to run the
YourName procedure. When it finishes the YourName procedure, it will run
DoingWell. Your module will look like Figure 5.5.

il Macruaall Yisual Base: = OeeBuniton ThreeSonpie. ppt = [Medubr] (Cod !EE
AF Ele B Mew fiet Fomel Owbug Ban ook Addins Wiodow Hela

L

=
==y
Lot

Ba-ld i efi o , oad NOW2 O
irli-rmau rl |'I'|:I|.|H4n1iwl'mmn

Dia ussrbame As 3tring
i}

kb YourHane

T e L [InpuEBox [PLompt (=" TYpe YVOUC han=",

Tlfl&:"'IhFHT Hsma ™}

End ZSub
Juby DolAgEall L)

MeagBox (°You are doing well, " & usecHame)
Erd Zub
Jub YourtameFithPrals=y)

Tourkame

o i el 1 i
End Bub

=fFal | _'rJ:J

Figure 5.5. YourNameWithPraise Calls YourName and DoingWell

Exercises to Try 61

Conclusion

You now have learned a few basic scripts to interact with your students.
You can get input and use it in feedback, either to include a student’s name in the
feedback or to judge a short-answer question. In the next chapter you will ex-
pand your bag of VBA tricks, including ways to manipulate your PowerPoint
slides, such as moving from slide to slide and hiding objects on your slides.

Exercises to Try

O 1f you completed the “Exercise to Try” in Chapter 4, edit your
presentation to change the RightAnswer and WrongAnswer
scripts to include the student’s name. Be sure to add a button on
the first slide, to ask for the student’s name (using the YourName
procedure in this chapter).

U Add another slide to your quiz with a short-answer question. Put
a single button on the slide that pops up the question. Use a dif-
ferent question than the one in this chapter. Don’t worry if you
can’t figure this out. Chapter 7 includes detailed instructions on
how to do this.

46

A Scripting Bag of Tricks

Introduction

In Chapter 5 you began to expand your single trick (the MsgBox) into a
small bag of tricks. On the way you learned some important lessons about vari-
ables, loops, and If statements. With this, you have the power to do some inter-
esting things to your PowerPoint projects. You can create an interactive
multimedia extravaganza as long as you only want it to be a little interactive. In
this chapter, you’ll expand your bag of tricks to include several interactive fea-
tures including navigation (i.e., moving around from slide to slide); hiding and
showing PowerPoint objects; and changing text, font, size, and style in objects.
You’ll finish off the chapter with an example that ties some of the tricks to-
gether: You’ll create a simple mystery with a clue sheet on which users can keep
track of clues.

Vocabulary
* Comment * Placeholder
 Constant * Property
e Initialize * RGB
* Navigation » TextRange

e With Block

64 A Scripting Bag of Tricks

Comments

Starting in this chapter, our examples are going to get a little more compli-
cated. That makes this a good time to talk about comments. So far, any explana-
tion of the VBA code has been placed in the text, but it might be helpful to have
some explanation built right into the code. This will be useful for me to explain
things to you, and it will be useful for you to explain things to yourself. Com-
ments are good at the beginning of procedures, as a brief note at the end of a line,
and as a note inside a procedure. In addition, comments are helpful to point out
obvious things because what is obvious to me might not be obvious to you, and
what is obvious to you now might not make as much sense when you look at it
later. And comments are helpful to point out things that are not obvious. A line
like

If answer = "" Then

obviously checks to see if the variable answer contains nothing, but it might be
helpful to put a comment, such as “The user didn’t type anything.”

If answer = "" Then 'The user didn’t type anything.

The comment starts with a single quote. This tells the computer to ignore every-
thing else on the line. That is, comments are for people looking at VBA code, not
for computers running VBA code; the computer ignores the comments. As in
this example, the comment can appear at the end of a line, or it can appear on a
line by itself or even on several lines each starting with a single quote:

'This procedure is our very first procedure.
'Tt puts a message on the user’s screen that says "Hello."
Sub SayHello()

MsgBox ("Hello") 'This is the line that puts up the message.
End Sub

If you type this example into your VBA Editor, you will notice that the
comments turn green. That will help you distinguish VBA code for the computer
from comments for you.

The next section discusses how VBA can be used to move from one slide to
another. This is an excellent place for a comment. The VBA command will tell
you that you are moving to slide 3, for example, but it won’t tell you why. If, for
example, slide 3 is your menu, a comment that says “Returning to the main
menu” will help you understand what your script is supposed to do.

Navigation: Moving from Slide to Slide

The traditional features of PowerPoint that you have used include the abil-
ity of moving from one slide to another with action buttons or hypertext links. If

Navigation: Moving from Slide to Slide 65

you hadn’t seen this before, you learned about it in Chapter 2. In fact, almost
anywhere you can go with VBA you can go with traditional PowerPoint
hyperlinks. So why would you want to complicate your life by doing something
with VBA that you already can do without it? This is a trick question. While you
can link to the same places without VBA, your hyperlinks only work when you
click a button or text, and linking will be the only thing that button or text does.
With VBA, you can link and do something else, or you can link to different
places depending upon the answer to a question (using something like what we
did in Chapter 5 with the YourName procedure or the Question procedure).

At the end of Chapter 5 you saw the procedure YourNameWithPraise.
This procedure did two things: It asked for the student’s name and it said, “You
are doing well.” Let’s start with that and make one small addition:

Sub YourNameWithPraise ()
YourName
DoingWell
ActivePresentation.SlideShowWindow.View.Next
End Sub

The line that we added moves to the next slide. Don’t worry how it does it; just
remember that any time you want to use VBA to move to the next slide, you can
insert that line into your procedure.

Imagine a title slide of your presentation. The only button on the slide
would be associated with this procedure (of course, you would need the
YourName and DoingWell procedures in your module, but only
YourNameWithPraise would be tied directly to a button). When the user
clicks on the button, YourName is called (the user is asked to type a name),
DoingWell is called (the user is told by name, “You are doing well”) and the
presentation automatically begins by moving to the next slide.

Of course, you don’t always want to go to the next slide. To move around
within your presentation, you can use any of the following:

ActivePresentation.SlideShowWindow.View.GotoSlide (3) Go to slide 3

ActivePresentation.SlideShowWindow.View.GotoSlide (4) Go to slide 4

ActivePresentation.SlideShowWindow.View.Next Go to the next slide
ActivePresentation.SlideShowWindow.View.Previous Go to the previous slide
ActivePresentation.SlideShowWindow.View.First Go to the first slide
ActivePresentation.SlideShowWindow.View.Last Go to the last slide

ActivePresentation.SlideShowWindow.View.Exit Exit the slideshow

66 A Scripting Bag of Tricks

With the first statement, you can go to any slide in the presentation. Simply re-
place “3” with the number of any other slide. The only difficulty is that if you
change the order of your slides, insert a new slide, or delete a slide, you will have
to change the number. In Chapter 8, we will discuss naming slides. You will be
able to set the names for your slides and use the name to go to a particular slide.
The ability to move around can be very powerful, particularly when the
slide to which you want to go is based on something the user types or does. The
next section reveals some secrets of MsgBox and ends with an example that
moves to a particular slide based on which button is pressed in the MsgBox.

The Secrets of the MsgBox

Until now, we have used the MsgBox command to pop messages up on the
screen. That is its main purpose. However, it can do more. Although it can’t let
the user type a message (use InputBox for that), MsgBox can display a few dif-
ferent combinations of buttons. If you don’t tell it which buttons to use, it just
has an OK button. The following table shows the different button combinations
you can use along with the secret word, which we’ll call a “constant,” to access
that combination. I'll explain the secret word after the table.

Button(s) Constant

OK vbOK

OK, Cancel vbOKCancel

Abort, Retry, Ignore vbAbortRetryIgnore
Yes, No, Cancel vbYesNoCancel

Yes, No vbYesNo

Retry, Cancel vbRetryCancel

We can now use a MsgBox to ask a simple question. We don’t have a lot of
choices for the answers (just the limited choices above), but at least we can ask a
yes/no question with a MsgBox. For anything more complicated, just use action
buttons on a slide and skip the MsgBox.

To put more buttons in a MsgBox, we need to do two things: add a second
argument to the MsgBox command (that’s where the secret word comes in) and
store the answer in a variable. Because the user can press one of two or three but-
tons, we need a way to keep track of which button was pressed. For example:

whichButton = MsgBox ("Do you like chocolate?", vbYesNo)

The variable whichButton will store information about which button was
pressed, and the second parameter to MsgBox (after the message that is to appear

The Secrets of the MsgBox 67

and the comma) is the constant that tells MsgBox which buttons to use. Figure
6.1 shows the MsgBox.

Micrnaoft PowerPoint

Do yos Bke chocolata?

| Yes ucr|

Figure 6.1. MsgBox with Yes and No Buttons

The secret words are called constants because they represent constant val-
ues (unlike variables, which can change value). In this case, the constants are
mnemonics for numbers. For example, vbYesNo is really the number 4. Wher-
ever you see the constant vbYesNo, you could type 4 instead. However, it might
be easier to remember that vbYesNo means “I want Yes and No buttons” than
remembering what 4 means in a MsgBox command. You can make your own
constants, but we’ll just use the ones that come with VBA; these usually start
with the letters vb (for Visual Basic) or mso (for Microsoft Office), so if you
ever see something that starts with vb or mso, it is probably a constant.

VBA comes with hundreds of constants that can be used with different
commands, and it comes with a few more for the MsgBox command. The most
important ones are values returned by MsgBox depending on which button was
pressed. The following are the possible values: vbOK, vbCancel, vbAbort,
vbRetry, vbIgnore, vbYes, and vbNo. For example, if the user clicks the Yes
button, MsgBox returns vbYes. We might want to do something based on the
button pressed. For example:

'Ask if you like chocolate. Give an appropriate response.
Sub Chocolate ()
Dim chocolateAnswer

chocolateAnswer = MsgBox ("Do you like chocolate?", vbYesNo)
If chocolateAnswer = vbYes Then 'The user likes chocolate.
MsgBox ("I like chocolate, too.")
Else 'The user does not like chocolate.
MsgBox ("Vanilla is a good choice.")
End If
End Sub

Here is an example for a commonly used feature: a quit button. Sometimes
users accidentally choose quit (by clicking on a button that calls a procedure
with ActivePresentation.SlideShowWindow.View.Exit). To prevent
quitting your presentation by accident, you might want to ask if the user really
wants to quit. Associate the following procedure with your quit button:

68 A Scripting Bag of Tricks

'Ask if you are sure you want to quit. If the answer is Yes,
'exit the presentation. If the answer is No, go to the next slide.
Sub QuitOK()
'result is a variable to keep track of which button is clicked.
Dim result

'MsgBox returns (will set the variable result to) vbYes if the

'Yes button is clicked and vbNo if the No button is clicked.

result = MsgBox ("Are you sure you want to quit", vbYesNo)

If result = vbYes Then 'Was the Yes button clicked?
ActivePresentation.SlideShowWindow.View.Exit

Else 'Since Yes wasn’t clicked, it must be No
ActivePresentation.SlideShowWindow.View.Next

End If

End Sub

With the additional power of MsgBox, you have another tool to do something
based on the answers to simple questions. By combining this with navigational com-
mands from the previous section, you can let the user go anywhere in your presenta-
tion based on the answers to questions. But moving from slide to slide isn’t the only
response. You might want to stay on the same slide and have something magical hap-
pen. In the next section, you will learn how to make objects appear and disappear.

Hiding and Showing PowerPoint Objects

In PowerPoint, every object that you see on the screen (text boxes, buttons,
pictures, etc.) has several properties that can be controlled by VBA. These might
include the height and width of the object, the text displayed in the object, the
color of the object, etc. Another property is whether or not the object is visible. If
you want to be able to see the object, you can set its Visible property to True
(note that VBA has a value that is msoTrue; this is the same as True for all your
purposes, so don’t worry if the VBA Editor suggests msoTrue; you can use
msoTrue or True and it will work). If you want to hide the object, you set its
Visible property to False (or msoFalse). For example, if you want to hide
the fifth object on the second slide (see “Referencing Objects by Number” below
if you don’t know which is the fifth object), you could use the following line:

ActivePresentation.Slides (2) .Shapes (5) .Visible = False

Change False to True, and you show the object once again:

ActivePresentation.Slides (2) .Shapes (5) .Visible = True

For example, you might want a star to appear on a slide when a user gets the
correct answer. To do this, create the star where you want it (using regular
PowerPoint drawing tools). Even add text, such as “Good job!” See “Manipulat-
ing Text in Objects” below for more about changing the text on the fly to include
the current score or the user’s name. Before this can work effectively, we’ll need
to set up the presentation before the user gets to the slide with the star. This will
require us to initialize the presentation.

Let’s Get Started: Initializing Your Presentation 69

Let’s Get Started: Initializing Your Presentation

Up to this point, the user could go to any slide and not worry how it looked
or even what was in any of the variables except possibly userName. As our pre-
sentations get more complicated, we will need to keep track of many different
things. It will be important that everything in the presentation starts out how you
want it. You don’t want the user to go to a slide that has a star before choosing
the right answer that is supposed to show the star. If you’re keeping score, you
want to be sure that the score starts at 0.

These kinds of things should be set up at the beginning of the presentation.
One of the best ways to do this is with a button on the title slide. If it is the only
button on that slide and you are in Kiosk mode, you know the user has to click
that button to continue. All that the user might see is that the button goes to the
next slide or asks for a name, but behind the scenes, your procedure is cleaning
up everything (making the beds, dusting the furniture, setting up variables, hid-
ing the toys and stars—all the things that you do before company comes).

In the hide and show example from the previous section, the one thing we
want to do is hide our star. We will use a procedure called Initialize to do
this (you could call it anything you want, like Housekeeper, Maid, or Mom).
Let’s imagine that you have two slides (slides 2 and 3) that will show stars when
the correct answer is chosen. If the stars are the fourth object on the slides, your
Initialize procedure might look something like this:

Sub Initialize()
ActivePresentation.Slides (2) .Shapes(4) .Visible
ActivePresentation.Slides (3) .Shapes (4) .Visible

End Sub

False
False

You could add something to this procedure to move to the next slide, or you
can do all your initializing from this procedure and have another procedure take
care of other stuff. So let’s add a Get Started procedure to do the other stuff as
well as call the procedure Initialize.

Sub GetStarted()
Initialize 'Hide the stars
YourName 'Ask for the name
ActivePresentation.SlideShowWindow.View.Next 'Go to the next slide
End Sub

This procedure will be linked to the button on the title slide. As the comments in-
dicate, it will use the Initialize procedure to hide the stars, it will use the
YourName procedure to ask for a name, and it will use
ActivePresentation.SlideShowWindow.View.Next to go to the next
slide. As always, because this procedure calls the YourName procedure and the
Initialize procedure, these procedures must be included in your module
along with the declaration (Dim statement) for the userName variable.

70 A Scripting Bag of Tricks

As you keep track of more things, you will set up more things in the
Initialize procedure. This will include more objects that might be hidden or
shown and variables, like ones to store the number of correct and incorrect an-
swers that need to be given initial values. You’ll see more about this in Chapter 7
when we start keeping score.

Finally, tying this all together, slides 2 and 3 will need buttons to show the
stars. These buttons might be the right answer buttons on those slides. For exam-
ple, the right answer on slide 2 might be linked to

Sub RightAnswerTwo
ActivePresentation.Slides (2) .Shapes(4) .Visible = True
End Sub

Other things could happen in the Right AnswerTwo procedure, such as adding
one to the number of correct answers or putting up a MsgBox, but until we get to
Chapter 7, a star with the text “Good job” will be enough.

Figure 6.2 shows the VBA script and slides for this example. The arrows
show which button should be connected to which procedure. The stars are show-
ing in the figure, but they will be hidden in the GetStarted procedure and
shown when the correct answer is chosen.

Welcome o the
Sample Tesi

Hiw, seermms ie fned
Pom GETELEmRR |
'

Who was the first presideni ,, i
T'r lh' U“- |] i b E I . ?-i.hl'.l-c.al. Bk e ¥ ks T i e

= Tujw
rs

wabrbmer ¢ Ingwiian jaeegd o= Prpe pre —"j

LT

LAY ATt

| b rwpFroeweney on B s (0 P b Fomis 0 Bres
o . N

| e TR

d iy ierr e LB B e PR A Y e
Hisl i

Figure 6.2. Simple Quiz Showing Stars for Correct Answers

Referencing Objects by Number 71

Referencing Objects by Number

In the above example, we hid and showed shape number 4 on slide number
2. You might be asking, “How do I know what the shape number is? I want to
hide that star, and I don’t know what number it is.” The number of an object gen-
erally is the order in which it was added to a slide. If you start with a blank slide
and add a text box, a rectangle, and a button (in that order), the text box will be
shape number 1, the rectangle will be shape number 2, and the button will be
shape number 3. If you start with a slide that is not blank, the existing shapes will
count. So, if you start with a bulleted list slide (known as a “Title and Text” slide
in PowerPoint 2002) and add the text box, rectangle, and button,

* the slide title will be shape number 1,

* the bulleted list text area will be shape number 2,
* the text box you added will be shape number 3,

* the rectangle will be shape number 4, and

e the button will be shape number 5.

This is fine, but most of us don’t have superhuman memories that can re-
member what order shapes were added. For PowerPoint versions 97, 98, 2000,
and 2001, finding the number is easy. While looking at a slide, go to the Slide
Show menu and choose “Custom Animation.” Click on the “Timing” or “Order
& Timing” tab, as shown in Figure 6.3.

r'Tl"liul o Dok i o b B,

[Fecharghs 2
Aien i Forsaryd or raesd 3

il

[&]

Qrtder & Tiwng | Erfets | Chart Effncts | Phiomecin Settings |
Ayl g | ol swntion

e
=)
—

)

Figure 6.3. Custom Animation to Find Shape Numbers

72 A Scripting Bag of Tricks

In the upper left corner of the dialog box, you will see the objects listed by
type and number. You can see that the text object is shape 1, the rectangle is
shape 2, and the action button is shape 3. If you have lots of objects of the same
type, you can click on the type and number of an object and the object will be
highlighted on the right.

Once you have figured out the number of the object you want, you can close
the dialog box with or without setting any animation.

For PowerPoint 2002, Custom Animation does not list all the objects on the
slide, but it will list the objects that are animated. Therefore, if you want to find
out an object’s number, click on the object to select it, choose “Custom Anima-
tion” from the Slide Show menu, and add an animation effect (see Figure 6.4).
Just as in earlier versions of PowerPoint, the number that appears after the object
type is the object’s number. In this case, the rectangle was selected, and it is ob-
ject number 2 because the animation list shows “Rectangle 2.” Note that the
number 1 on the slide and in the animation list refers to the animation order, not
the object number. After determining the object’s number, don’t forget to re-
move the animation effect by clicking on the “Remove” button in the “Custom
Animation” window.

alpiz
Hipe o g o= fyea fon mpies feis e ==
AFE MY AT L RBT e e TR T m e,
Tl =40 s R0 B 8 IE_'I el ol e LT R [
- PR r— Ey e e e e Sy § oo i Bk mockd O e e, T H
[y v e (5 s |
il iy e
B] om sl -
e

Frooi Wl W ey Bl .I

(28 & wmnrge:]

Thas 15 0 text box

! > |

1 = -
[n]]
L 3 T T
i gt . SO TR A I A AR A,
LTl debeiinn *‘Lu __

Figure 6.4. Finding the Object Number in PowerPoint 2002

Referencing Objects by Name 73

The difficulty with referencing objects by number is that numbers change.
This can happen if you delete an object from your slide or change the drawing
order of your objects (by going to the Draw menu and choosing something from
the Order submenu). When you delete an object from a slide, all the higher num-
bered objects change. For example, in our slide above with the text object, the
rectangle, and the button, if we delete the text object, the rectangle becomes ob-
ject number 1, and the button becomes object number 2. If you had written a
script to do something to the rectangle, referencing the rectangle as object 2,
your script would not work. That is why it is better to reference objects by name;
names do not change unless you change them.

Referencing Objects by Name

Every object on a slide has a name. Anything you can do with an object’s
number, you can do with its name. Names are better than numbers because
names of objects don’t change unless you change them. The bad news is that
there is no easy way (in any version of PowerPoint) to get the name of an object.
Using VBA to determine the name of an object or change the name of an object
is described in Chapter 8.

There is some logic to the names that are given to objects, so you might be
able to figure out the name of an object. Each object’s name starts with the type
of object followed by a number. The main types of objects are Text Box, Rectan-
gle, Line, Oval, Picture, and AutoShape. If the object isn’t one of the other types,
it is probably AutoShape. The numbers are assigned in order as the shapes are
added to the slide, except that the numbering always starts with 2. Therefore, if
you add a text object, a rectangle, and button to a blank slide, the objects will be
named Text Box 2, Rectangle 3, and AutoShape 4 (see Figure 6.5). If there are
already objects on the slide, the numbers will start higher. For example, if you
add the same shapes to a bulleted list slide, the slide already contains Rectangle 2
(the title area) and Rectangle 3 (the bulleted list area), so your added shapes will
be Text Box 4, Rectangle 5, and AutoShape 6.

This 15 o text box
"Taxt Bow 2"

<

"Autoe Shage 4" v@gorangle 3¢

Figure 6.5. Shapes on a Slide, with Names in Quotations Below

74 A Scripting Bag of Tricks

These names do not change unless you change them. If you delete Text Box
4, Rectangle 5 and AutoShape 6 will keep the same name, and nothing will have
a name with 4 in it. The number added to new names keeps going up even when
you delete shapes. Thus, if you add the above shapes and then delete them and
then insert a picture from clip art, the picture will be named Picture 7 even
though no objects include 4, 5, and 6 in their names.

In order to use the name of an object, use it in quotes in the same place you
would use the object number. Thus, to hide a shape named Text Box 4 on slide
number 5, you could use the following line:

ActivePresentation.Slides (5) .Shapes ("Text Box 4") .Visible = False

Of course, remembering shape names is just as hard as remembering shape
numbers. Check out the scripts in Chapter 8 that will let you make up your own
shape names.

This Slide or Another Slide

In the above examples, our scripts to hide and show objects specified which
slides contained the objects. Sometimes you want an action to affect the current
slide without regard to which number slide it is. For example, you might want to
show an object on the current slide or add some text to a text box on the current
slide or change the color of a menu item on the current slide. This is particularly
useful when you want to write one procedure that will work on several slides. For
example, if our DoingWell procedure revealed a star and each slide had a star
with the same name or number, we could add a line to DoingWel1 to show the star
on the current slide. One DoingWe11 procedure would be used for all the slides.

Sometimes you might want an action to affect another slide. You might be
on one slide but wish to have something change on another slide, as we saw in
our Initialize procedure. Inthe Initialize example, we wanted the slide
to be set up properly before the user got there, so the change happened to the
other slides when the user was on the first slide. We also want changes to happen
before we arrive at a slide. If we hide our star (or change text on a slide or change
the color of menu items) just as we arrive at a slide, the hidden object will be on
the screen for a split second before disappearing. In some cases, this might not be
a big problem, but if the action is to hide the answer to the question, this could be
very important.

Anything affecting the current slide will start with

ActivePresentation.SlideShowWindow.View.Slide

So, for example, if you want to hide shape number 7 on the current slide, you
would use this line:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(7) .Visible = False

Adding PowerPoint Objects 75

Anything affecting another slide will start with

ActivePresentation.Slides (NUM)

where NUM is replaced by the number of the slide. So, for example, if you want to
hide shape number 7 on slide number 2, you would use this line:

ActivePresentation.Slides (2) .Shapes(7) .Visible = False

Any expression throughout this book that uses a statement to affect the cur-
rent slide can be changed to use a statement for another slide, and any expression
that uses a statement to affect another slide can be changed to use a statement for
the current slide.

Adding PowerPoint Objects

In the previous sections, we hid and showed any objects that we wanted af-
ter using normal PowerPoint drawing features to create the objects. Any object
that you can create with PowerPoint drawing tools you can create and manipu-
late with VBA. In fact, you could use VBA to create your entire presentation, in-
cluding all the slides, all the buttons, all the shapes, and all the text. For almost
all your purposes, you are better off creating the shapes with PowerPoint draw-
ing tools and using VBA to hide and show them, but in Chapters 7 and 10, we’ll
see examples that create slides and add shapes to them using VBA.

The problem with adding shapes is that they can collect in your presenta-
tion and can be hard for you to delete. For example, consider the star we hid and
showed earlier in this chapter. Instead of hiding it and showing it, we could use
VBA to create it. The problem is that once the shape is created, it is part of the
presentation. Unless you are careful, you will have that shape (and possibly sev-
eral copies of that shape) incorporated into your presentation. You can delete the
shape when you are done, but this is an extra thing to track and not generally
worth the effort.

If you are not dissuaded from adding shapes and would like to try it, you can
try this example. If you heed my warnings, you’ll skip this, go on to the next sec-
tion, and only come back to this to understand the examples in Chapters 7 and 10.

Let’s add a simple square in the middle of the screen:

Sub AddRectangle ()
Dim myShape As Shape

Set myShape = _
ActivePresentation.SlideShowWindow.View.Slide.Shapes. _
AddShape (Type:=msoShapeRectangle, Left:=100, Top:=100, _
Width:=200, Height:=200)

myShape.Fill.ForeColor.RGB = vbRed

myShape .TextFrame.TextRange.Text = "Hello"

End Sub

76 A Scripting Bag of Tricks

This looks complicated, but it is not as complicated as it looks. This procedure
does three things: It creates the rectangle, it turns it red, and it puts the word
“Hello” inside. Let’s take it line by line:

Dim myShape As Shape

We are going to create a shape, so we create a variable to hold that shape. That
way, once the shape is created, we can refer to it later in the procedure. Next we
create the shape:

Set myShape =

ActivePresentation.SlideShowWindow.View.Slide.Shapes. _
AddShape (Type: =msoShapeRectangle, Left:=100, Top:=100,
Width:=200, Height:=200)

ActivePresentation.SlideShowWindow.View.Slide gives us the
current slide. Shapes gives us the shapes on the slide, and the AddShape
method is used to add a shape to the shapes on the slide. Now, everything be-
tween the parentheses is simply telling you about the shape:

* The Type is what shape you are creating: msoShapeRectangle for
a rectangle.

* Left and Top are the location on the screen of the top left corner of
the shape

* Width and Height are how wide and tall the shape is.

Some other shapes you might use instead of msoShapeRectangle are:

msoShapedpointStar msoShapeIsoscelesTriangle
msoShapeSpointStar msoShapeLeftArrow
msoShape8pointStar msoShapelLightningBolt
msoShapeBalloon msoShapeMoon
msoShapeBentArrow msoShapeNoSymbol
msoShapeBentUpArrow msoShapeOctagon
msoShapeCross msoShapeOval

msoShapeCube msoShapeParallelogram

msoShapeCurvedDownArrow
msoShapeCurvedLeftArrow
msoShapeCurvedRightArrow
msoShapeCurvedUpArrow
msoShapeDiamond
msoShapeDonut
msoShapeDownArrow
msoShapeHeart

msoShapeHexagon

msoShapePentagon
msoShapeRectangle
msoShapeRightArrow
msoShapeRightTriangle
msoShapeRoundedRectangle
msoShapeSmileyFace
msoShapeSun
msoShapeTrapezoid

msoShapeUpArrow

Putting the Student’s Input into a Box 77

Try replacing msoShapeRectangle with some of the other shapes from this
list.

Finally, we set some properties of the shape. Since the shape is stored in the
variable myShape, we can use myShape to manipulate some of the shape’s
properties:

myShape.Fill.ForeColor.RGB = vbRed

This line takes the shape we just created and stored in the variable myShape and
adjusts its color. This looks complicated, but you just have to remember that if
you want to change the color of a shape, you need to adjust the
.Fill.ForeColor.RGB. After the equal sign is the color we want. There are
many ways to specify the exact color, but you can use the following basic colors:
vbBlack, vbRed, vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan, and
vbWhite.

Shapes can also have words in them. If you want to set the text in the shape
to “Hello,” use the following line:

myShape.TextFrame.TextRange.Text = "Hello"

This is simply a long way of saying that the text in this shape should be set to
“Hello.”

Adding objects can be useful, especially if you want the user to make sig-
nificant changes to the presentation. In the example in Chapter 10, the user adds
slides to the presentation. These slides become part of the presentation, and there
are an undetermined number of them (every user that goes through the presenta-
tion can add slides to it). In most cases, however, you will have a few shapes that
you have determined in advance. Rather than creating those shapes in VBA, you
would do better to create them in PowerPoint and hide and show them with
VBA. This will prevent your presentation from getting cluttered with extra
shapes when a user hits a button too many times and adds several extra shapes.

Putting the Student’s Input into a Box

When we created a shape ourselves, we could easily add text to it. Since the
variable myShape pointed to the shape, we were able to use myShape to change
any of the shape’s properties, including the text in the shape. We can do the same
thing with a shape that we created with PowerPoint’s drawing tools.

ActivePresentation.SlideShowWindow.View.Slide.Shapes (3)

refers to the third shape on the current slide, so

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3) _
.TextFrame.TextRange.Text

78 A Scripting Bag of Tricks

refers to the text on the third shape of the current slide.

ActivePresentation.SlideShowWindow.View.Slide.Shapes (3)
.TextFrame.TextRange.Text = "Hello"

changes the text of the third shape of the current slide to “Hello.”
Now, we can put this together with YourName and Initialize to put the
user’s name in the text box:

Dim userName

'Link this to the first button on the title slide.
Sub GetStarted()
Initialize 'Hide the stars
YourName 'Ask for the name
ActivePresentation.SlideShowWindow.View.Next 'Go to the next slide
End Sub

'GetStarted calls this so no buttons link to this directly.
'This assumes that slides 2 and 3 will have the 4th shape that
'yvou will want to show when the right answer is chosen.

Sub Initialize()

ActivePresentation.Slides (2) .Shapes(4) .Visible = False
ActivePresentation.Slides (3) .Shapes(4) .Visible = False
End Sub

'GetStarted calls this to ask for a name.
Sub YourName ()
Dim done As Boolean

done = False
While Not done
userName = InputBox (prompt:="Type your name",
Title:="Input Name")
If userName = "" Then
done = False
Else
done = True
End If
Wend
End Sub

'Link this to the button that contains the right answer on each slide.
'Be sure you have used your drawing tools to create the 4th shape
'on each slide.
'Note that this RightAnswer does not automatically go to the next
'slide.
Sub RightAnswer
ActivePresentation.SlideShowWindow.View.Slide.Shapes (4)
.TextFrame.TextRange.Text = "Good job, " & userName
ActivePresentation.SlideShowWindow.View.Slide.Shapes (4) .Visible = True
End Sub

You have seen most of this before. GetStarted, Initialize, and
YourName are just like what we used earlier. The only new thing is in
RightAnswer. Rather than using a simple string, like “Hello,” for the text in the

Manipulating Text in Objects 79

object, we put together some text with the user’s name, just like we did with a
MsgBox in our earlier DoingWell procedures.

Of course, you can do the same thing with a shape that you use VBA to cre-
ate, but you can figure that out for yourself.

Manipulating Text in Objects

In the previous section, we changed the text in a shape by accessing the
shape’s .TextFrame.TextRange.Text. Now that you have access to that
part of a shape, you can do whatever you want to the text in that shape. This is
useful for changing the text in shapes you draw with the drawing tools, in shapes
you create with VBA with Addshape, and in shapes that come with PowerPoint
slides (such as the title or bulleted text area on a slide). But you can do more than
simply change the text on a shape to something new. You can manipulate the
text in many different ways. This section doesn’t cover all of them, but it is
enough to get you started exploring.

With Blocks

Before changing the text, we should learn a simple VBA trick to save you
from typing long expressions over and over again. You might have noticed that
to get to the text for a shape, you have to type something very long, such as

ActivePresentation.SlideShowWindow.View.Slide.Shapes (3) .TextFrame _
.TextRange.Text

This refers to the text in the third shape in the current slide (it’s interesting how I
can say it in English in less space than I can say it in VBA). To save typing, we
can use a With block. For example, if we want to do several things to the third
shape on the current slide, we can do the following:

With ActivePresentation.SlideShowWindow.View.Slide.Shapes(3)

.TextFrame.TextRange.Text = "Hello"
.Fill.ForeColor.RGB = vbRed
.Visible = True

End With

The with block (starting with the first line that begins with with and ending
with the line that ends with End with) simply assumes that anything starting
with a dot really includes all the stuff on the with line. In English, it is saying, “I
want to do the following things to the third shape on the current slide: change the
text to ‘Hello’, change the background color to red, and make the shape visible.”

80 A Scripting Bag of Tricks

Adding Text

Now, suppose you want to add something to the text in your shape, rather
than replace the text. Remember the ampersand (&). This is used to join two
pieces of text together. We used it when we wanted to display text in a MsgBox
that included “You are doing well” and the user’s name. We can use it here to
join what is already in the text box with some additional text. Once we join to-
gether the text we need to stick the joined together text into the . Text of the
shape.

Sub AddHello ()
With ActivePresentation.SlideShowWindow.View.Slide _
.Shapes ("Rectangle 3")
.TextFrame.TextRange.Text = _
.TextFrame.TextRange.Text & Chr$(13) & "Hello Mother"
End With
End Sub

The with line (including the next line that is really part of that line due to the un-
derscore) tells the computer that we are going to do something with the shape
named “Rectangle 3” on the current slide. If the current slide is a Bulleted List
slide, “Rectangle 3 refers to the bulleted list area (the main area for text).

.TextFrame.TextRange.Text = _

tells the computer that we are going to put something into the text area of that
slide. After the equal sign, the next line

.TextFrame.TextRange.Text & Chr$(13) & "Hello Mother"

tells the computer what we are going to put into the text area. We are going to

e start with what is already there (. Text Frame . TextRange . Text);

e add to that a special character, Chr$ (13), which is the New Para-
graph symbol (just like hitting “Enter” or “Return” if you were typ-
ing the text into the text area yourself); and

¢ add the text “Hello Mother”.

This will have the effect of taking what was already in the bulleted list and add-
ing a new line with the words “Hello Mother.” Remember, you can do anything
with the text that you want. We added “Hello Mother” as a simple example. You
could have added the user’s name. For example, you might write an interactive
story with your students in which the student types a name at the beginning of
the story, and the name is used during the story by replacing or modifying the
text in one of the slides:

Manipulating Text in Objects 81

Sub BrickPig()
With ActivePresentation.Slides(7) .Shapes ("Rectangle 3")

.TextFrame.TextRange.Text = .TextFrame.TextRange.Text &
"And then the third pig, " & userName & _
", built a house of bricks. The brick house " & _
"was very strong."
End With
End Sub

This takes the shape named “Rectangle 3" on the seventh slide and adds text to it
that includes the user’s name (assuming you have used the YourName procedure
at some previous point to get the user’s name). If “Rectangle 3” is a Placeholder
(see below for information about Placeholders), be sure it has something in it
when you try to run this code, or your text will not show up until after you exit
Slide Show View.

As another example, imagine that you are having a class discussion, and
you want to record the students’ comments in your PowerPoint presentation.
Perhaps you are discussing the signs of spring, and you want the class to tell you
signs of spring related to plants and animals. Without technology, you would
write the information on the blackboard. However, this is awkward if you are us-
ing PowerPoint as part of the discussion; it is awkward to run from the computer
to the blackboard, and it is awkward to flip the lights off and on so students can
see the screen and the blackboard alternately. Instead, use this simple code to put
the text right into the PowerPoint presentation:

Sub AddPlants ()
Dim newstuff As String

newstuff = InputBox("What is a plant sign of Spring?")
If newstuff "" Then
With ActivePresentation.SlideShowWindow.View.Slide _
.Shapes (2) .TextFrame.TextRange
.Text = .Text + Chr$(13) + newstuff
End With
End If
End Sub

Sub AddAnimals ()
Dim newstuff As String

newstuff = InputBox("What is an animal sign of Spring?")
If newstuff "" Then
With ActivePresentation.SlideShowWindow.View.Slide. _
Shapes (3) .TextFrame.TextRange
.Text = .Text + Chr$(13) + newstuff
End With
End If
End Sub

This code works on a slide with two text boxes that you add as the second
and third shapes on the slide, and it works with a 2-Column Text slide. Just be-
ware that if you add text to an empty Placeholder (that’s one of those text boxes
that says “Click to add text” or “Click to add title” before you put anything in it,

82 A Scripting Bag of Tricks

i.e., your title, left column, and right column in the 2-Column Text slide), your
text will not show up until you exit the slideshow. To avoid this problem, either
use a Title Only slide and draw your own text boxes or type a space in the text
area so the Placeholder is not empty.

The code works with the slide shown in Figure 6.6. This figure shows the
slide before and after typing some text. In this case, you would have pressed the
Plant button (which is tied to the AddPlant procedure) twice and the Animal
button (which is tied to the AddAnimal procedure) once, having been prompted
by an InputBox each time to name a sign of spring. The If statement in each
procedure (along with the corresponding End If) can be left off, but it provides
you with an escape if you accidentally hit the wrong button: Simply click OK
without typing anything. The If statement asks if you have typed something
(i.e., the text you typed is not the empty string), and it only adds the text to the
slide if the answer is yes.

R O S it | | 2SR

P, e bwalsm o0 i Py e
e
= Them g by e

Figure 6.6. Signs of Spring Discussion Slide—Before and After

Of course the entire example could be simplified with one procedure, one text
box, and one button if you don’t want to organize student responses into two columns.
It can also be complicated by adding more similar procedures, more text boxes, and
more buttons if you want to divide student responses into more than two areas.

Manipulating Parts of Text in an Object

TextRange is an interesting creature. The TextRange of a shape refers to
the entire text in that shape, but anything you can do to a TextRange, you can
do to a part of a TextRange. You can do things to specific paragraphs within the
TextRange, specific words within the TextRange, and specific characters
within the TextRange.

For example, if you wanted to change to blue the color of the text in the en-
tire third shape of the current slide, you could use the following code:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Font.Color.RGB = vbBlue

Manipulating Text in Objects 83

Almost identical code can be used to change the second paragraph of the third
shape on the current slide to blue:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Paragraphs (2) .Font.Color.RGB = vbBlue

Note that paragraphs include the New Paragraph symbol, Chr$ (13), as part of
the paragraph. Thus, you must be careful when changing the text of a paragraph
to be sure that each paragraph ends with Chr$ (13). See the Mystery Example
later in this chapter for an example of this. With another small change, the sec-
ond word becomes blue:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Words (2) .Font.Color.RGB = vbBlue

Note that VBA counts punctuation marks as words. For example, the text
“Hello, my name is David” has six words (by VBA’s count; who said computers
were smart?), with the comma being the second word. With another small
change, the second character becomes blue:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Characters (2) .Font.Color.RGB = vbBlue

Finally, any of these statements can be altered slightly to include a range of para-
graphs, words, or characters. Simply include a second number after the “2” to
tell how many paragraphs, words, or characters you want to affect. For example,
if you want to make seven characters blue, starting with the second one, you
would use the following:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Characters (2,7) .Font.Color.RGB = vbBlue

If the text is “Hello, mother,” then the characters “ello, m” would turn blue (the
comma and space count as the fifth and sixth characters).

What Can You Change?

All of the examples above changed the color of the text using
.Font .Color.RGB. This is one of many things that you can change about the
font of the text. You can change Bold, Italic, Shadow, and Underline to
True or False. For example:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Font.Bold = True

This is the same as if you had selected the text and clicked on the Bold button in
the toolbar.

84 A Scripting Bag of Tricks

You can also set the Size of the text to a particular point size. For example, if
you wanted to change the text to a 12-point font size, you could use the following:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Font.Size = 12

You can change the Name of the font, but you should beware; if this presen-
tation is running on a variety of computers, you should stay away from fonts that
are not standard because your font will only show up properly if the computer on
which the presentation is running has the font. To change the font to Helvetica,
you can use the following example:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Font.Name = "Helvetica"

Finally, you can change the color in a number of ways. You have already
seen that you can choose from some VBA constant colors: vbBlack, vbRed,
vbGreen, vbYellow, vbBlue, vbMagenta, vbCyan, and vbWhite. You can
also set colors by using an RGB value. RGB stands for Red Green Blue. You
will specify a color by indicating how much red, how much green, and how
much blue the color contains. For example, to make the text red, you could use
the following:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
TextFrame.TextRange.Font.Color.RGB = RGB(255,0,0)

This means that you want lots of red, no green, and no blue (the numbers range
from O to 255). You can experiment with the numbers to find just the right shade
you want. For example, RGB (150, 0, 75) gives a lovely shade of purple.

Other Things You Can Do to Text

Many things that traditional PowerPoint can do to text, VBA can do as
well. If you want to make changes while creating a presentation, using
PowerPoint’s menus to do things is probably easiest. VBA is useful when you
want to change things in response to something the user does. You can use VBA
to Cut, Copy, Delete, Or Paste text:

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
.TextFrame.TextRange.Words (3, 2) .Cut

ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
.TextFrame.TextRange.Words (4, 2) .Paste

This will cut the third and fourth words in the third shape of the current slide (re-
member the “3,2” means start with the third word and do this for two words).
Next it will find the fourth and fifth words (counting words without the text that
was just cut) and replace them with what you cut. So if the text was “one two

Manipulating Text: The Mystery Example 85

three four five six seven eight nine ten,” the Cut will change the text to “one two
five six seven eight nine ten,” and the Paste will change it to “one two five three
four eight nine ten.” Change the Cut to Delete to getrid of the text without the
ability to paste it, and change it to Copy to copy the text without removing it
from the original location.

You can also find out how long (i.e., how many characters) a TextRange is
with Length:

MsgBox (ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
.TextFrame.TextRange.Length)

This will pop up aMsgBox with the number of characters in the third shape of the
current slide.

Finally, you might want to know how many words or paragraphs are in a
TextRange. You can use Count to find this out:

MsgBox (ActivePresentation.SlideShowWindow.View.Slide.Shapes(3). _
.TextFrame.TextRange.Paragraphs.Count)

This will pop up a MsgBox with the number of paragraphs (change Paragraphs
to Words to get the number of words).

Manipulating Text: The Mystery Example

You have seen many tricks for manipulating text, but you might be wonder-
ing how they might fit into a real example. This section includes a simple exam-
ple of a presentation that solves a mystery. This is a simple mystery with only
two clues, but you should be able to expand it to include more clues. Figure 6.7
(page 86) shows the slides in this mystery. Figure 6.8 (page 87) shows the VBA
code for the presentation.

In this simple example, most of the navigation is done with traditional
PowerPoint buttons. The forward and back arrows are linked to the next and pre-
vious slides, the “Update Clue Sheet” button is linked to the last slide, and the
“Return to Mystery” button is linked to the last slide viewed (i.e., if the user just
came from Mystery Clue #1, it will go back to Mystery Clue #1).

The buttons that use VBA are on the first and last slides. The first slide has
the “Let’s Get Started” button that links to the Get Started script. Although we
don’t have to initialize any variables, we do have to set up the last slide. This in-
volves setting up the text area (which is the second shape) on the fifth slide with
two paragraphs:

With ActivePresentation.Slides (5) .Shapes(2) .TextFrame.TextRange
.Paragraphs (1) .Text "Eye Color:" & Chr$(13)

.Paragraphs (2) .Text "Hair Color:"
End With

86 A Scripting Bag of Tricks

Shvsteny Clee £]

T s sl sl i e s gl s (i g
Fre= o mrvmn b dfee g recdemg s
Welinmse 0 the Myslon

The Mastas Cha Shea

@
T Ly L ippdie bus ‘Sor sbodon bromm s = !jj
Pancles ndnl B dal 0" Y om B daie

-

iy U [y afotann mamdgad b sk g Do * B TH Wb
e 1 e Dol b imd D wowed Lrrpn T - T -
it mpden b e b b el el e
Ihm e i yomsl = ssinr il dhisd Pas Loam
tomitd wrmkl nshs 5wl apgrs pe B b
Elmala b md room o S dad 6t =

= S

Aivelery Choe 51

[l bl s pimren bk vy e mew Wik S Lt
&0 il the man

Figure 6.7. The Mystery Presentation Slides

This uses a with block because both paragraphs are part of the TextRange of
the TextFrame of the second shape on the fifth slide. Note that we add
Chr$ (13), the new paragraph symbol, to the end of the first paragraph. Without
it, the paragraphs would run together.

We also want to hide the picture of the apple pie (which is the seventh shape
on the fifth slide) because it will only be shown when the user gets the right an-
swer:

ActivePresentation.Slides (5) .Shapes(7) .Visible = False

If you add more clues, update the Get Started procedure to refer to what-
ever slide number is the last slide. That is, change the “5” to another number in
both lines referring to the slide.

| bis userdsss &3 Evrisg

ble userfgezs Ry SCeing

Tubr GeiErarted(]
Eith RetivePressntation.d]idss (9 ;Shapes 2] TegtFoons . TextRangs
ORraFraApheil) JTERE = "Evs Calog:® L Cho3ild)
< Pacageaphs i) Texs = "Hale Colac)®
End EBitk
ket ivaPresantat ian, Al ldes [5) Shapes {T) . Visibls = False
Yourkases
CAcTivePreasntat ion, 51 {deshoulindond Vo, Mext,
-Eng Fukb
Tubs YourKams ()
ukeriame = InphtBox (propptie®Type your name®,
Tinle:="Iaput Man=")
§ Efuf Fub

o sub Eywiseles ()
izmebC s = InputBexiprcapt i="lhat ls the sye coloci”)
Bith Activelresentation. 3] ldes (3] (Shapes {2, Texilrass TextRangs
~Parageapha{l] Text = "Eys Dolor! ™ § trarcClde & Chreidll)
If waseClpe = “hlus® Then
cParagraphs (1) JBords () Font.ColopRED & ThElue
Els=If peserdine = *gresn®™ Then
PATRFCashE (L) Berde () et . LalaE JREE = whGDes]i
End I
End Eiek
Ena sub
o - Haiptolor [
usprtlue = InporBox iprompti=*What 1= che helr oolop?=)
Hith ActivePresentst ion:31ides (%) Shapes{i iTaxtFrase . TextRange
JPacagoaph i) Text & THaic Soloci * L usertloe
If usecClu=- = *hilande® Thén
razagrashe i) Ssrds (4 Font.Coloc . B = whirellow
Elaslf wamtllun = "black™ Than
razageaphs () Ssrds (4) Fent,Color RES = ghElack
=% [
End Rick
End- Tub
Fubcuess ()
karifuses -« TnpubBox {proapt-="Wha 454 1279
1T usarizuess = “Desles® Thén
ATEiveRiEESaREATiGh B EAES (5] Shapan(T) NMivibhle = Toud
Mapgles |"vou e pighty T L ussiHamEe i _
T Bauld you Liks & pless of pleT)
AstiveRresentatlion. slidesbmamindo View, Corodl fds (1)
Claglf userfusss = "Gpsbes™ TRON
|*¥ry again and chack the esye colocTl
Elnali gserGusss = “Ceale=* Thon :
MrgEcx [("Try again and chack the halc cobar.®)
Eln=
Mrghax (*Try again®k
end 1E
End Tub

o

Figure 6.8. The Mystery Presentation VBA Code

88 A Scripting Bag of Tricks

EyeColor and HairColor are almost identical. The main difference is
that EyeColor changes the text in the first paragraph and HairColor changes
the text in the second paragraph. EyeColor uses an InputBox to prompt for the
eye color and stores what the user types in the variable userCclue. The Wwith
statement is just like the With in GetStarted, referring to the TextRange
where the clues are stored. The code:

.Paragraphs (1) .Text = "Eye Color: " & userClue & Chrs$(13)

changes the first paragraph (the one that includes the eye color clue) to whatever
the user typed. The If statement then checks to see if what was typed was
“blue™:

If userClue = "blue" Then

If it is, it changes the color of the fourth word (which would be the word “blue”)
to blue:

.Paragraphs (1) .Words (4) .Font.Color.RGB = vbBlue

The E1seIf part checks to see if the user typed green and changes the color of
the text to green.

Guess uses an InputBox to ask for the user’s guess. The part that checks
for the correct answer is a series of If, ElselIf, Elself, Elself, and Else
statements. The I £ section is for the right answer. It shows the picture of the ap-
ple pie (because DeeDee wanted the apple to make pie):

ActivePresentation.Slides (5) .Shapes(7) .Visible = True

It shows a MsgBox telling the user that the answer is correct:

MsgBox ("You are right, " & userName &
". Would you like a piece of pie?")

And when the user clicks OK on the MsgBox, it jumps back to the beginning:

ActivePresentation.SlideShowWindow.View.GotoSlide (1)

The two ElseIf clauses each bring up a MsgBox with specific feedback
about what was wrong, and the E1se clause (if the user typed anything besides
“DeeDee,” “BeeBee,” or “CeeCee”) brings up a MsgBox that gives the generic
feedback “Try again.”

To create your own mystery, simply change text on the mystery and clue
slides, change the text in the VBA code that refers specifically to eye color and hair
color (in case your clues are about something else), change the text on the eye color
and hair color buttons, and change the I£ block in the Guess procedure to give ap-
propriate feedback for the possible guesses in your mystery. You might also want to

Exercises to Try 89

change the picture of the apple pie to something else. If you add more clues, simply
copy one of the clue slides, change the text, and change S1ides (5) to Slides (6)
or Slides (7) or whatever number the last slide is. Finally, you might have to ad-
just some of the shape numbers. For example, when you create this yourself, your
picture (replacing the apple pie picture) might not be Shapes (7).

Conclusion

In this chapter you learned some powerful VBA tricks that allow you to
move around in your presentation and manipulate the objects on your slides.
You now have the power to hide and show objects and manipulate the text in
your objects. This allows you to expand feedback from a simple MsgBox to
something that changes the text in the slides. For simple feedback, a MsgBox is
fine, but to incorporate what your students have to say into the fabric of the pre-
sentation, nothing beats changing the text on your slides. The discussion ended
with a creative mystery example that shows how this technology can go beyond
simple tutorials and quizzes. In the next chapter you will see how to build quiz-
zes of varying complexity with different types of questions and different ways of
tracking and reporting scores.

Exercises to Try

U Take the mystery example at the end of this chapter and rewrite
it to include your own mystery. Start by changing the text of the
mystery and updating the questions. Next, change the clue sheet
to match your clues and change the apple pie picture to match
your mystery.

G 1 you are feeling adventurous, try expanding the mystery beyond
two clues by adding more clue slides and more paragraphs on the
clue sheet.

47

Quizzes and Tests

Introduction

In Chapter 6 you learned a number of powerful tricks. In fact, you now have
most of the basic skills you need to create a wide range of interactive projects. If
you fancy yourself a programmer, you can stop here and figure everything else
out for yourself. However, since this book is for scripters, we will continue with
a few more tricks and many more examples.

In this chapter you will learn about different ways to create quizzes and
tests with VBA. We’ll start with simple multiple-choice tests, add scripts to keep
score, give options for tests that only allow one try to get the right answer or al-
low multiple tries, add short-answer questions, add a script that creates a new
slide with complete test results suitable for printing, and add a multiple-part tu-
torial that won’t let your students take the test until they have completed the en-
tire tutorial. By the time you finish this chapter, you will have the skills
necessary to create tests in a variety of different ways.

Vocabulary
* ActivePresentation.Slides.Add * numIncorrect
* L.Case * Round

e numCorrect *Trim

92 Quizzes and Tests

Simple Multiple-Choice Tests

In Chapter 2 you learned about buttons and hyperlinks. This gave you the
power to create a simple multiple-choice test with feedback. Without using
VBA, you could create a text object and type the question in the text object. Be-
low the text object, create buttons with possible answers. Link the button with
the correct answer to a slide that has a text object that tells the student that the an-
swer is correct. Link the buttons with the incorrect answers to a slide that has a
text object that tells the student that the answer is incorrect. On the (correct and
incorrect) feedback slides, create a button that leads to the next question, and re-
peat these steps for each question. This works, but it is a little bit cumbersome.

With a little bit of VBA from Chapter 4, you could eliminate the feedback
slides and use a simple MsgBox for feedback, tying your buttons with right and
wrong answers to the following procedures, respectively:

Sub RightAnswer ()
MsgBox ("Good job.")
End Sub

Sub WrongAnswer ()
MsgBox ("Try to do better.")
End Sub

With a little help from Chapter 5, you can include the user’s name in your
feedback:

Dim userName

Sub YourName ()
userName = InputBox (prompt:="What is your name?")
End Sub

Sub RightAnswer ()
MsgBox ("Good job, " & userName)
End Sub

Sub WrongAnswer ()

MsgBox ("Try to do better, " & userName)
End Sub

Next, add a little bit of help from Chapter 6 to automatically jump to the
next question after the right answer is chosen:

Sub RightAnswer ()

MsgBox ("Good job, " & userName)
ActivePresentation.SlideShowWindow.View.Next
End Sub

As usual, with a small amount of VBA, we have added a small amount of
power: adding the user’s name to the feedback and cutting down on the number
of slides. These are small advantages over traditional PowerPoint. In the next
section, we’ll add more power by keeping score.

Keeping Score 93

Keeping Score

If you create a test with the above procedures attached to the right and
wrong answers, you don’t have to change your slides or buttons at all to add
scorekeeping; you just need some small additions to your VBA. Figure 7.1
shows the slides for a simple test along with the VBA code that gives feedback
and keeps score. The arrows show which buttons are tied to which procedures.

Wik i tho

Sample Tt
e s I camlafcecs i3 [ALESeT
i mimlnsogrect dd nfagas

[fin_cancimns A grring
BET: GETATRrT |
™= Tsiriakise
Yoacfarn
o i -

Wihkes W Pl find p g IF o -:::.'H-rmrnhﬂ tovm 1 | S el | i) e e 1
of thett Blimitod SlalesT Jub Thitiailzm 1

EECOETaGT = 3

ma IR0 rpect =
i B E—
Tl Yo Fmwre 06

cymcBars » Ihps o iprowpt (o Thpe your sasa®)
JE T b
B Frghthrrwsr i f

T Decl = EieDorpsEl T L
. Codngmall
What s 1+ 1 AcEivaPrissntat Som. 31 LinSRowlibao Vi rir. Bk

bk Eodnghioll [l
megion ["You ars doopg wsil, T 5 UEEpEEE|
el Wroe et | |

"""-h 1 T ipthiTect =& SnSlecoiaest & |
P Eaiagbeesly
Bt hvmFrare: tafron I Linikonl: ndow, Wise . Bewk

Ed s

el SiGREFOITFI |
Mg STy T 0 TR R G, " b e -
[L

fuk FosdbasEi) phy 1 .
— Magioy |TToe gat T L wmBoctest @ Y ol &F 4
L OEEDEIT 4 DI INSCOEEEE 4 ", " b umegliesen|

Figure 7.1. Multiple-Choice Test with Scorekeeping

Although this example only has two questions, and each question has two
possible answers, this easily can be expanded to include more questions and
more possible answers. In fact, the VBA script remains exactly the same. You
simply add more slides and tie the buttons to the RightAnswer and
WrongAnswer procedures.

94 Quizzes and Tests

In Chapter 6, we did something similar with GetStarted, Initialize,
RightAnswer, and WrongAnswer, using stars for feedback and not keeping
score. The significant additions to this script are the variables: numCorrect and
numIncorrect. numCorrect contains the number of questions answered cor-
rectly. numIncorrect contains the number of questions answered incorrectly.
Each time a correct answer is chosen, the procedure RightAnswer is called in
which numCorrect is increased by one (numCorrect = numCorrect + 1).
Each time a wrong answer is chosen, the procedure WrongAnswer is called in
which numIncorrect is increased by one (numIncorrect =
numIncorrect + 1). When you want to find out how you are doing, call the
procedure Feedback to display a MsgBox with how many questions were right
(numCorrect) out of how many were answered (numCorrect +
numIncorrect). In addition, before the test starts, call the procedure
GetStarted to initialize the variables (set numCorrect and numIncorrect
to 0), ask for the student’s name, and move to the first question. Other than the
variables, all the parts of this script are things you have seen before.

You might want to report the score in other forms. Now that we know how
many questions were answered correctly and how many were answered incor-
rectly, you can adjust the MsgBox command in the Feedback procedure to re-
port in other ways. If you just want to report the number of right answers, try
this:

MsgBox ("You got " & numCorrect & "right, " & userName)

If you want to report the number of right answers and the number of wrong
answers but not the total, you can use this:

MsgBox ("You got " & numCorrect & " right and " _
numIncorrect & " wrong, " & userName)

If you would like to report a percentage score, you can use this:

MsgBox ("You got " & _
100 * numCorrect / (numIncorrect + numCorrect) & "%, " & userName)

Finally, if you want that percentage score rounded off, you can use this:

MsgBox ("You got " & _
Round (100 * numCorrect / (numIncorrect + numCorrect), 0) & _
"%, " & userName)

Note that the 0 represents how many places after the decimal point to show, so if
you like the result “33%,” use 0; if you like the result “33.3%,” use 1; etc.
This is just the tip of the iceberg with what you can do with tests. Variables
can be used to keep track of any information you want; for example, you could
allow students to try answering a question again but only count the first try.

Try Again: Answer Until It’s Right 95

More complicated scripts can be used to judge other kinds of test questions;
short-answer questions are a small step away. With VBA, the possibilities are
endless.

Try Again: Answer Until It’s Right

Keeping score is easy when you only get one chance to answer each ques-
tion. What if you want your students to answer the questions until they get them
right? How difficult this is depends on how you want to keep score. If you want
to count every attempt, you don’t have to change much. Simply delete
ActivePresentation.SlideShowWindow.View.Next from the
WrongAnswer procedure. This will stop the presentation from going to the next
question after a wrong answer, but it will count every click on the wrong answer
as well as the click on the right answer. For example, if you use the questions
from Figure 7.1 (page 93) and click on Abraham Lincoln (the wrong answer for
question 1), then George Washington (the right answer for question 1), then 2
(the right answer for question 2), your score will be two out of three because you
got the first question wrong once then right once, and you got the second
question right once.

If you want to count only the first try, in the above example you would want
a score of one out of two. That is because you got the first question wrong on the
first try, and you got the second question right on the first try. This requires no
changes to your slides, including which buttons are tied to which procedures. It
only requires the following code; changes from the code in Figure 7.1 are
marked with comments (* ADDED for additions and ‘DELETED for the line that is
deleted):

Dim numCorrect As Integer

Dim numIncorrect As Integer
Dim userName As String

Dim gAnswered As Boolean 'ADDED

Sub GetStarted()
Initialize
YourName
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub Initialize()

numCorrect = 0

numIncorrect = 0

gAnswered = False 'ADDED
End Sub

Sub YourName ()
userName = InputBox (prompt:="Type your name")
End Sub

96 Quizzes and Tests

Sub RightAnswer ()

If gAnswered = False Then 'ADDED

numCorrect = numCorrect + 1

End If 'ADDED

gAnswered = False 'ADDED

DoingWell

ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub DoingWell ()
MsgBox ("You are doing well, " & userName)
End Sub

Sub WrongAnswer ()

If gAnswered = False Then 'ADDED

numIncorrect = numIncorrect + 1

End If 'ADDED

gAnswered = True 'ADDED

DoingPoorly

'DELETED ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub DoingPoorly ()
MsgBox ("Try to do better next time, " & userName)
End Sub

Sub Feedback ()

MsgBox ("You got " & numCorrect & " out of " _
& numCorrect + numIncorrect & ", " & userName)
End Sub

The heart of this procedure is the variable ganswered. It keeps track of
whether or not the current question has been answered yet. If it is False, the ques-
tion has not yet been answered; if it is True, the question has been answered.

A small amount of code is added to the Dim section to declare gAnswered
so that all the procedures know about it. It also must be initialized to False in
the Initialize procedure soitis False when you get to the first question. Fi-
nally, RightAnswer and WrongAnswer must check and adjust the value of
gAnswered.

RightAnswer and WrongAnswer check to see if the question has not been
answered yet If (gAnswered = False) Then and only add one to numCorrect
or numIncorrect if gAnsweredis False; thatis, the question has not yet been
answered. In addition RightAnswer sets gAnswered to False before going to
the next question, and WrongAnswer sets gAnswered to True before letting
you try again (by not going to the next question).

Try Again and Again: Answer Again After It’s Right

The previous example works fine as long as your students are forced to
move to the next question (and can’t come back) once they have gotten the right
answer. This gets more complicated if you allow students to come back to ques-
tions later. The problem is that we need to keep track of more things; that is, we

Try Again and Again: Answer Again After It’s Right 97

need variables to remember if each question has been answered: glAnswered,
g2Answered, etc. As you begin to understand this example, you might think of
other things that you want to remember. In a later example in this chapter, we
will keep track of not only which questions have been answered but also what
those answers were. If you want to try to go beyond the examples in this book,
remember that you can create as many variables as you want to keep track of as
many things as you want.

To allow students to revisit questions as many times as they want, you will
have to alter your question slides to include buttons that move to the next and
previous slides, as in Figure 7.2.

Whatis 1 + 07

=]
L

Figure 7.2. Question Slide with Next and Previous Buttons

The other change to your slides will be to tie your right and wrong answer
buttons to new procedures. We will need a new procedure for each question’s
right and wrong answers, rather than one procedure for all right answers and one
for all wrong answers. These specialized procedures will check the variables
(glAnswered, g2Answered, . . .) to see if the questions have been answered
and will update the variables and the score appropriately.

Here is the complete VBA code for this example. Comments have been
used to indicate changes from the previous example:

Dim numCorrect As Integer

Dim numIncorrect As Integer

Dim userName As String

Dim glAnswered As Boolean 'ADDED to replace gAnswered
Dim g2Answered As Boolean 'ADDED to replace gAnswered

Sub GetStarted()
Initialize
YourName
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub Initialize()
numCorrect = 0
numIncorrect = 0
glAnswered = False 'ADDED to replace gAnswered
g2Answered = False 'ADDED to replace gAnswered
End Sub

98 Quizzes and Tests

Sub YourName ()
userName = InputBox (prompt:="Type your name")
End Sub

Sub RightAnswerl () 'ADDED to replace RightAnswer

If glAnswered = False Then

numCorrect = numCorrect + 1

End If

glAnswered = True 'Do not reset glAnswered to FALSE

DoingWell

'DELETED ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub RightAnswer2 () 'Same as RightAnswerl with 1 changed to 2
If g2Answered = False Then
numCorrect = numCorrect + 1
End If
g2Answered = True
DoingWell
End Sub

Sub DoingWell ()

MsgBox ("You are doing well, " & userName)
End Sub
Sub WrongAnswerl () 'ADDED to replace WrongAnswer

If glAnswered = False Then
numIncorrect = numIncorrect + 1
End If
glAnswered = True
DoingPoorly
End Sub

Sub WrongAnswer2 () 'Same as WrongAnswerl with 1 changed to 2
If g2Answered = False Then
numIncorrect = numIncorrect + 1
End If
g2Answered = True
DoingPoorly
End Sub

Sub DoingPoorly ()
MsgBox ("Try to do better next time, " & userName)

End Sub

Sub Feedback ()

MsgBox ("You got " & numCorrect & " out of " _
& numCorrect + numIncorrect & ", " & userName)
End Sub

The most significant additions are the new variables glAnswered and
g2Answered and the special right and wrong answer procedures for each ques-
tion. The variables keep track of which questions have already been answered.
glAnswered is True if question 1 has been answered, and it is False if ques-
tion 1 has not been answered. g2Answered is True if question 2 has been an-
swered, and it is False if question 2 has not been answered. If you have more
than two questions, you need a g3Answered, g4Answered, etc.; that is, you

Short-Answer Quiz Questions 99

need one variable for each question. These variables are declared at the begin-
ning with the Dim statements:

Dim glAnswered As Boolean
Dim g2Answered As Boolean

Then, in Initialize they are initialized (set to False because none of the
questions have been answered yet):

False
False

glAnswered
g2Answered

Remember that if you have more questions, you need to repeat both of these sets
of statements for each additional variable.

Next, we need our specialized RightAnswer and WrongAnswer proce-
dures. RightAnswerl is tied to the right answer button for question 1.
WrongAnswerl is tied to the wrong answer button(s) for question 1.
RightAnswer2 and WrongAnswer2 are for question 2. And, if we had more
questions, RightAnswer3 and WrongAnswer3 would be for question 3;
RightAnswer4 and WrongAnswer4 would be for question 4; etc.

These procedures simply check the appropriate variable to see if the ques-
tion has been answered. If it hasn’t (If glAnswered = False Then), we up-
date the score (numCorrect = numCorrect + 1 Or numIncorrect =
numIncorrect + 1). Regardless of whether or not it has been answered be-
fore, we set the variable to True (e.g., glAnswered = True for question 1) and
give the appropriate feedback (calling DoingWell or DoingPoorly).

Short-Answer Quiz Questions

The above examples can be extended very easily to include short-answer ques-
tions. If we were to add a third question that was short answer, we would first need
the variable g3Answered, just like g1Answered and g2Answered, declared with
a Dim statement and initialized in the Initialize procedure. We would also need
the procedures RightAnswer3 and WrongAnswer3, just like Right Answer1 and
WrongAnswerl (except using g3Answered instead of glAnswered). Then we
would need a procedure to ask a question and judge the answer:

Sub Question3 ()
Dim answer

answer = InputBox (Prompt:="What is the capital of Maryland?", _
Title:="Question 3")

If answer = "Annapolis" Then
RightAnswer3

Else
WrongAnswer3

End If

End Sub

100 Quizzes and Tests

This procedure uses the variable answer to store the answer typed by the
student. Because only this procedure needs to know about it, it can be declared
inside the procedure (Dim answer). Next, we use InputBox, just like in the
YourName procedure, to ask the student to type the answer, which is stored in
the variable answer.

In our multiple-choice questions, buttons were tied to our RightAnswer
and WrongAnswer procedures. With a short-answer question, we don’t have
buttons to call these procedures, so we use an If statement. If the answer is right,
call the appropriate RightAnswer procedure; if the answer is wrong, call the
appropriate WrongAnswer procedure.

The last thing you need is a way for the question to be asked. Figure 7.3
shows an example slide. Just connect the “Click to answer” button to the
Question3 (or whatever number you use) procedure, and when the user clicks
on the button, the InputBox will pop up asking for an answer. The figure shows
a button with the words “Click to answer,” but your button can contain the ques-
tion itself, the word “Question,” a question mark, or whatever else you like (as
long as the user knows to press the button to get and/or answer the question).

What is the capital of
Marylind?

.!H-J.. 1 ik rE |

Figure 7.3. Short-Answer Question Slide

Note that this procedure was set up to work with the previous example in
which students can answer questions over and over again. To have it work with
any other examples, change the calls to RightAnswer3 and WrongAnswer3 to
RightAnswer and WrongAnswer.

Do Spelling and Spacing Count?

Now we have a short-answer question, but even people who live in Maryland
have trouble spelling “Annapolis.” If spelling is important in your test, then leave the
Question3 procedure alone. However, you might be tolerant of several mistakes that
your students might make, so you might want to be more lenient. You might want to
ignore extra spaces, ignore capitalization, and accept alternative spellings.

Spaces before and after the answer can be handled easily with the Trim com-
mand. Insert the following line after the InputBox statement:

answer = Trim(answer)

Do Spelling and Spacing Count? 101

This will take the answer that was typed, remove any spaces at the beginning or
end, and put the result (without the extra spaces) back into the answer variable.
Trim will turn “ Annapolis ” into “Annapolis.” This will not eliminate any
spaces in the middle, so “Ann apolis” will remain “Ann apolis.” If for some rea-
son you only want to remove the spaces before the answer or after the answer,
use LTrim or RTrim respectively.

If you are not concerned with how your students capitalize their answers,
LCase can set the answer to lowercase by adding:

answer = LCase (answer)

This takes the answer that the student typed, converts all capital letters to lower-
case letters, and puts the lowercase version back in the variable answer. This
will change “Annapolis,” “AnNaPolis,” and “AnnApolis” to “annapolis.” If you
are testing to make sure the student knows to capitalize the first letter of a city
name, don’t use LCase.

Warning! The answer is now lowercase. This means that
your If statement needs to compare it to a lowercase re-
sponse. If answer = “Annapolis” Then will never
be True because ‘“‘annapolis” is not the same as
“Annapolis” and LCase changes all capitalizations of
“Annapolis” to “annapolis.” So even if the student types
“Annapolis,” LCase will change it to “annapolis” and
mark it wrong when comparing it to “Annapolis.”

If you are willing to accept alternative spellings or alternative answers, you
can test for all the alternatives that you want in your If statement:

If answer
answer
answer
answer

"annapolis" Or _
"anapolis" Or _

"annappolis" Or _
"anappolis" Then

Include as many or as few different alternatives as you like. Just remember that if
you used LCase, all your alternatives must be lowercase.

If we use all our tricks (ignoring extra spaces, accepting any capitalization,
and allowing alternative answers), our procedure will look like this:

102 Quizzes and Tests

Sub Question3 ()
Dim answer

answer

= InputBox (Prompt:="What is the capital of Maryland?", _

Title:="Question 3")

answer
answer

= Trim(answer)
= LCase (answer)

If answer = "annapolis" Or _

answer
answer

"anapolis" Or

"annappolis" Or _

answer = "anappolis" Then
RightAnswer3

Else

WrongAnswer3

End If
End Sub

The exact same procedures can be used for any short-answer question. Sim-
ply change the InputBox statement to include your question and change the I£
statement to include the correct answer(s) for your question.

How Did You Do: Reporting Results to the Teacher

The previous examples concentrated on giving feedback to students by tell-
ing them which questions they got right and wrong and what their score is at the
end. In this section, you will learn a trick to have your students report results to
you. One method of reporting that information is to create a results slide that can
be printed. We’ll extend the previous examples in two ways to do this:

1.

Instead of using a MsgBox to announce the results, we will create a
slide that announces the results. The slide will include a button for
printing.

We will not only keep track of right and wrong answers but specifi-
cally what the answer was that was typed. This will allow our results
page to print a list of answers that were given.

The most significant changes to the code are related directly to our two ex-

tensions:

We will add the procedures PrintablePage to create the slide with
the results, PrintResults to print the results on the printer, and
StartAgain to delete the results slide and go back to the beginning.

We will add variables to keep track of which answers were selected
first. For this example, we will use the three questions from the previ-
ous example so we will have three variables: answerl, answer?2,
and answer3. These variables will be used to print the students’ an-
swers on the printable page.

How Did You Do: Reporting Results to the Teacher 103

Here is the complete code (new lines and procedures are indicated by the
comment ‘ADDED):

Dim numCorrect As Integer

Dim numIncorrect As Integer

Dim userName As String

Dim glAnswered As Boolean

Dim g2Answered As Boolean

Dim g3Answered As Boolean

Dim answerl As String 'ADDED

Dim answer2 As String 'ADDED

Dim answer3 As String 'ADDED

Dim printableSlideNum As Long 'ADDED

Sub GetStarted()
Initialize
YourName
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub Initialize()

numCorrect = 0

numIncorrect = 0

glAnswered = False

g2Answered = False

g3Answered = False

printableSlideNum = ActivePresentation.Slides.Count + 1 'ADDED
End Sub

Sub YourName ()
userName = InputBox (Prompt:="Type your name")
End Sub

Sub DoingWell ()
MsgBox ("You are doing well, " & userName)
End Sub

Sub DoingPoorly ()
MsgBox ("Try to do better next time, " & userName)
End Sub

Sub AnswerlGeorgeWashington ()
If glAnswered = False Then
numCorrect = numCorrect + 1

answerl = "George Washington" 'ADDED
End If
glAnswered = True
DoingWell
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub AnswerlAbrahamLincoln ()
If glAnswered = False Then
numIncorrect = numIncorrect + 1

answerl = "Abraham Lincoln" 'ADDED
End If
glAnswered = True
DoingPoorly

End Sub

104 Quizzes and Tests

Sub Answer2Two ()
If g2Answered = False Then

numCorrect = numCorrect + 1
answer2 = "2" 'ADDED
End If
g2Answered = True
DoingWell
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub Answer2Four ()
If g2Answered = False Then
numIncorrect = numIncorrect + 1

answer2 = "4"
End If
g2Answered = True
DoingPoorly
End Sub

Sub Question3 ()
Dim answer

answer = InputBox (Prompt:="What is the capital of Maryland?",
Title:="Question 3")

If g3Answered = False Then 'ADDED
answer3 = answer 'ADDED

End If 'ADDED

answer = Trim(answer)

answer = LCase (answer)

If answer = "annapolis" Then
RightAnswer3

Else
WrongAnswer3

End If

End Sub

Sub RightAnswer3 ()
If g3Answered = False Then
numCorrect = numCorrect + 1

End If

g3Answered = True

DoingWell

ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub WrongAnswer3 ()
If g3Answered = False Then
numIncorrect = numIncorrect + 1

End If
g3Answered = True
DoingPoorly

End Sub

Sub PrintablePage () 'ADDED

Dim printableSlide As Slide
Dim homeButton As Shape
Dim printButton As Shape

How Did You Do: Reporting Results to the Teacher 105

Set printableSlide = _
ActivePresentation.Slides.Add (Index:=printableSlideNum,
Layout : =ppLayoutText)
printableSlide.Shapes (1) .TextFrame.TextRange.Text =
"Results for " & userName
printableSlide.Shapes (2) .TextFrame.TextRange.Text =
"Your Answers" & Chr$(13) &

"Question 1: " & answerl & Chrs$(13) & _
"Question 2: " & answer2 & Chrs$(13) & _
"Question 3: " & answer3 & Chrs$(13) & _
"You got " & numCorrect & " out of " & _
numCorrect + numIncorrect & "." & Chr$(13) & _

"Press the Print Results button to print your answers."

Set homeButton = _
ActivePresentation.Slides (printableSlideNum) .Shapes.AddShape _
(msoShapeActionButtonCustom, 0, 0, 150, 50)

homeButton.TextFrame.TextRange.Text = "Start Again"
homeButton.ActionSettings (ppMouseClick) .Action = ppActionRunMacro
homeButton.ActionSettings (ppMouseClick) .Run = "StartAgain"

Set printButton = _
ActivePresentation.Slides (printableSlideNum) .Shapes.AddShape
(msoShapeActionButtonCustom, 200, 0, 150, 50)

printButton.TextFrame.TextRange.Text = "Print Results"
printButton.ActionSettings (ppMouseClick) .Action = ppActionRunMacro
printButton.ActionSettings (ppMouseClick) .Run = "PrintResults"

ActivePresentation.SlideShowWindow.View.Next
ActivePresentation.Saved = True
End Sub

Sub PrintResults() 'ADDED
ActivePresentation.PrintOptions.OutputType = ppPrintOutputSlides
ActivePresentation.PrintOut From:=printableSlideNum,

To:=printableSlideNum

End Sub

Sub StartAgain() 'ADDED
ActivePresentation.SlideShowWindow.View.GotoSlide (1)
ActivePresentation.Slides (printableSlideNum) .Delete
ActivePresentation.Saved = True

End Sub

The most important thing you need to know about this script is how to add
more questions. If you understand the explanation of the script below, that is
great, and you will have a better ability to change aspects of the script. But if you
don’t understand the script, you can still add questions. Almost everything you
need to do to add questions is the same as in previous sections:

* You will need another RightAnswer and WrongAnswer procedure
for each new question. Note that in the earlier examples, for multi-
ple-choice questions, these procedures would be named
RightAnswer4 and WrongAnswer4, RightAnswer5 and
WrongAnswers5, etc. In this example our procedures are more specific
because the answerl, answer2, and answer3 variables must be set
to the chosen answers. That is why you need a procedure for each
answer. Just follow the examples of AnswerlGeorgeWashington

106 Quizzes and Tests

and AnswerlAbrahamLincoln for right and wrong answers
respectively. Note that in this example we have added
ActivePresentation.SlideShowWindow.View.Next to our
RightAnswer procedures so the presentation automatically goes to
the next slide after a correct answer. Leave this out (just like in the
previous example) if you want students to stay on the slide until they
choose to go forward.

* You will need another Quest ion procedure for every short-answer
question (e.g., Question5 or Questionl?7).

* You will need another gAnswered and answer variable (declared
with a Dim statement and initialized in the Initialize procedure)
for each new question (i.e., g4Answered and answer4,
g5Answered and answers, etc.).

* You will need to add a line to the PrintablePage procedure to in-
clude the results for each new question (e.g., "Question 4: " &
answer4 & Chr$(13) &).

You will need to add the slides with the questions you are adding, ty-
ing the buttons to the appropriate right and wrong answer proce-
dures or the Question procedure for a short-answer question.

As a scripter, you do not need to understand the code to be able to use it. If
you can follow the above steps to add your own questions, you are in good
shape. If you want to understand the code, read on.

Keeping track of the answers in answerl, answer2, and answer3 is fairly
simple. Inserting a new page for printing and printing it is more complicated. Be-
cause we are going to add a slide, we need to know which slide number to add.
This is done with the variable printablePageNum. In our Initialize proce-
dure, we set this variable to one more than the total number of slides that we have
(i.e., if we have six slides, this will be set to 7 because the slide we are going to
add will be the seventh slide):

printableSlideNum = ActivePresentation.Slides.Count + 1

The PrintablePage procedure creates the page. Figure 7.4 shows an example
of this slide.

The following line creates a slide and stores it in the variable
printableSlide:

Set printableSlide = _
ActivePresentation.Slides.Add (Index:=printableSlideNum, _
Layout : =ppLayoutText)

How Did You Do: Reporting Results to the Teacher 107

(Start Again | [Print Hesulis]
Results for David

* Vour Answers

= {hpesibon 12 Alraham | incaln

= hueation I 1

« Uhpesiion 3: Annapalis

 Yoon pot 2 oot of §,

= Press (e Priml Hesulis batton
o rimi ¥ouT anawers,

Figure 7.4. Example of Printable Slide

Index:=printableSlideNum creates a new slide after the last slide.
Layout : =ppLayoutText makes the slide a normal Bulleted List slide with
two text areas: (1) a title area and (2) a bulleted list area. The following lines set
the text in those areas (this is where you would add the answers for more ques-
tions):

printableSlide.Shapes (1) .TextFrame.TextRange.Text =
"Results for " & userName

printableSlide.Shapes(2) .TextFrame.TextRange.Text =
"Your Answers" & Chrs$(13) &

"Question 1: " & answerl & Chr$(13) & _
"Question 2: " & answer2 & Chr$(13) & _
"Question 3: " & answer3 & Chr$(13) & _
"You got " & numCorrect & " out of " & _
numCorrect + numIncorrect & "." & Chr$(13) & _

"Press the Print Results button to print your answers."

printableSlide.Shapes (1) refers to the title area of the slide, and
printableSlide.Shapes (2) refers to the bulleted list area of the slide. Note
that if you have several questions, you might want to play with formatting the
display of your answers, possibly using a two-column text slide
(ppLayoutTwoColumnText instead of ppLayoutText and putting some text
in shape 2 and other text in shape 3) or adjusting the font size of the text area by
putting the following line after the above code:

printableSlide.Shapes (2) .TextFrame.TextRange.Font.Size = 9

9 is the size of the font, so you can choose a different number for a smaller or
larger font. Note that some versions of PowerPoint (2002 and above) automati-
cally change the font size for you so your text fits the text box. However, if you
use those versions, you might consider changing the font yourself in case your
presentation is used with an earlier version of PowerPoint.

Next we need to add buttons to our new slide. The following line adds a
custom button in the top left of the screen (coordinates 0,0) that is 150 pixels
wide and 50 pixels tall. A custom button has no icon in it.

108 Quizzes and Tests

Set homeButton = _
ActivePresentation.Slides (printableSlideNum) .Shapes.AddShape
(msoShapeActionButtonCustom, 0, 0, 150, 50)

Because we stored the button in the variable homeButton, we can use that
variable to change the attributes of the button. We need to put some text in the
button. The text “Start Again” will appear in the button:

homeButton.TextFrame.TextRange.Text = "Start Again"

Then we make the button clickable and assign a procedure (in this case, the
StartAgain procedure) to the button:

homeButton.ActionSettings (ppMouseClick) .Action = ppActionRunMacro
homeButton.ActionSettings (ppMouseClick) .Run = "StartAgain"

The code for the Print Results button is almost identical, so if you under-
stood the code above you don’t need any explanation for the Print Results button.
Finally, we want to go to the slide (Act ivePresentation.SlideShowiWindow.
View.Next) that we just created and fool PowerPoint into thinking that the
presentation does not need to be saved (ActivePresentation.Saved = True—
see “Saving and Quitting” in Chapter 8 for more information about this line).
The PrintResults procedure has two lines:

ActivePresentation.PrintOptions.OutputType = ppPrintOutputSlides
ActivePresentation.PrintOut From:=printableSlideNum, _
To:=printableSlideNum

The first line makes sure that PowerPoint knows it is going to print one slide per
page. The second line actually prints the single slide that we just created. If our
printable slide is slide number 6 (and thus printableSlideNumis 6), that line
says to print from slide 6 to 6.

The last procedure is StartAgain. This simply goes to the first slide, de-
letes the slide that was just printed (ActivePresentation.Slides
(printableSlideNum) .Delete), and makes sure that PowerPoint doesn’t
ask you to save.

You might want to know what buttons will be tied to the last three proce-
dures. PrintablePage, instead of the Feedback procedure from earlier exam-
ples, will be tied to the “How Did I Do” button. But what about the last two
procedures? That is a trick question. You don’t tie them to any buttons. We have
used VBA to create the buttons and tie them to procedures as part of the
PrintablePage procedure. Creation of the buttons and tying them to proce-
dures is taken care of automatically with our VBA.

Learn First, Ask Questions Later: The Tutorial and Quiz 109

Learn First, Ask Questions Later:
The Tutorial and Quiz

This chapter has explained several ways to create tests and quizzes. Now
we are going to add a tutorial to our presentation. You could do this easily by
creating some slides with some information that precede your quiz slides. If each
information slide has a button to move forward, students are forced to go
through the information slides before reaching the quiz.

This works very well for a simple, linear tutorial. What if your tutorial is more
complex? What if your tutorial has several parts, each of which can be reached by a
menu? That is not a problem. Simply put buttons on your menu slide for each part of
the tutorial and put a button for your quiz on the menu slide as well.

This leaves you with two problems: getting lost in hyperspace and forcing
your students to go through the tutorial before taking the quiz. We’ll deal with
these issues one at a time.

Lost in Hyperspace: Where Have I Been?

In a linear tutorial, that is, one where you force the student to go from one slide
to the next to the next, there is no problem with getting lost. Once you allow the stu-
dent choices about where to go, getting lost is an important concern. That can hap-
pen when users don’t know where they are, where they are going, where they have
been, and how to get where they want to go. In the real world, there are landmarks
and street signs to help you get around. Computer screens are often missing those
things. Even something as simple as a tutorial with sections linked by a menu can
get confusing. The most confusing part of a menu is knowing where you have been:
“Did I already do section 2 and section 3 or section 3 and section 4?” One solution to
this is to leave some indication in the menu about where the user has been.

There are many ways to do this. One thing that you have probably seen in
your Web browser is that it changes the color of visited links: A blue link to an-
other Web page turns purple after you have followed that link. If your menus are
all text, PowerPoint will do this automatically for you (although the results
might not be exactly what you want). If you use buttons for your menu, one solu-
tion is to turn the buttons a different color. For example, you can change the
color of the fourth shape on the second slide to magenta with:

ActivePresentation.Slides (2) .Shapes(4) .Fill.ForeColor.RGB = vbMagenta

Another possibility is to indicate that a menu item has been visited by putting
a symbol next to it, such as a check mark or a smiley face. You might create a tuto-
rial and quiz like the one shown in Figure 7.5 (page 110). This simple tutorial has
three parts: The Executive Branch, The Legislative Branch, and The Judicial
Branch. Students may choose these parts of the tutorial in any order. Smiling
sunshines next to the buttons indicate those sections of the tutorial that have already

110 Quizzes and Tests

been completed. The smiling sunshines (or whatever symbols or pictures you like)
can be created with any traditional PowerPoint tools (drawing, clip art, inserting a

picture, etc.).

o
The Legilative Hranch
A Brict lmtrodaction to * Ther (fumse of Beprostaiaiors
ey e Legislative Branch
e |

= Dintwieh Laws

Eatugntopsng Fomiare s

FL The Jadicial Branch

T Sudiclal Branch

wiind I ol

k]

= lmirrjoeis Lass

© The Executive Brunch

-

Widaen Nilh
* Fafarais Laws

= Presslaml | T .
- Jis
= Nikwr Prgsidli B VA, ri’ Which branch
+ The Cahimsl Bispla eriafes liws?
Mypariink T
o177 B0 which branch

The Executive Bpfinch

E—J RoturntossrulfroaPare] I

interprets kaws?

=

Wiich branch |
r:u!l.'unn I.lnl-:l-

S

I' :n.-l.gh.u.r_r-: | I.mng:nn-n.r 1

Figure 7.5. Example Tutorial and Quiz PowerPoint Slides

In the figure, slide numbers are shown in the upper left corner of the slide,
and the boxes indicate which procedures are tied to which buttons. Notice in the
figure that some of the buttons do not use VBA; they use traditional PowerPoint
hyperlinks. Figure 7.6 shows the VBA code. Note that the quiz portion of this
example is fairly simple (it doesn’t keep score), but you can use any of the

Learn First, Ask Questions Later: The Tutorial and Quiz 111

examples from this chapter and plug the code into the Initialize procedure
(add that code to earlier Initialize procedures; never create two separate
Initialize procedures) and add the ReturnToMenuFromPartl,
ReturnToMenuFromPart2, ReturnToMenuFromPart3, and JumpToMenu
procedures from Figure 7.6.

His userifame Ao Stcing
ol TR Certad il
Initislize

Yourfame=

REbaveppasentat 166 .0l ideIhouBindow, Vied NexE

8l End Fub

Bib Imttidlazai)

ActiveRrasantat ion Bl ides (3 Bhapss (6 Vinghls = Falys
Abtivepraseankat ion Fliddas (T BB pEs (Th . Wisibls = Fales
ActivaFressnEal Jon Sl ides (2} Ehap=s (B} . Vinzhils = Falss

End Bub

Bub Yourlame(i)
i=arlines = LhpUtRox (prompt i="Type yout nam=")

i . Enad Bub

Fub BeteEnTodemarcoafacti]

ACtivERrasankab lon Bl ides (24 BhapEn (6 Winibls = Trus
7 L pToMEnS

En<d Bib I .

Sub- FAturnToMEneF roaFactl (] fn
hetavebrasentation . 0l ides (3} JAhapss [Th Viaibls = Tru=
JumpToM=nE

| End gsb

Bib BetoenToMamal roafactd 1)

ActivePrasentation Bl ides (I} . Bhapaa (Bhovinihl=s = Trus
FimpT oM

.Err1. =u.b. ——

Suh J i prTedeEE) =
Aetiveprasentation Ul idsihosmindow, View Cotadlode (2]

End Sub

Hub RaghtAnswsri)

Poingwedl
ActivEPrasentat ion Bl ds dhowlindow . W i NexE

Erd Sub

fub Poinge=1L()

HugBax (|*Youw are doeing wsll.

Endl Alb

Tub FrongAneesrs |}

Toimgboocly
ACtivEFrasant st 100 Bl ids dhokE Indow . Vi Naxt

End Bub

Sigh DS1cgPoom i)

MEgBox (ST Lo d0 bettar next times.

End Binl

® i us=rHame)

® 4 uzsrians)

Figure 7.6. VBA Code for Menus with Feedback in Tutorial and Quiz

112 Quizzes and Tests

The important parts of this example are shapes 6, 7, and 8 on slide 2 (the
menu slide). These are the smiling sunshine pictures that indicate that a section
of the tutorial has been completed. Of course, the numbers might change de-
pending on how you create the menu slide, and you might have more menu items
and thus more smiling sunshines (or whatever picture you choose).

As the shapes are the important parts, all but one of the new procedures deal
with the shapes. The three lines in the Initialize procedure, like

ActivePresentation.Slides (2) .Shapes (6) .Visible = False

hide the shapes so that when the student reaches the menu for the first time, the
shapes are hidden. If your menu is not on slide 2, change the 2 to something else.
In addition, this hides shape 6, so there is one line for each smiling sunshine,
each with a different number.

Next we need to show the shapes at the appropriate time. They will be
shown when clicking on the button that returns from each part of the tutorial.
The three ReturnFromMenuFromPart procedures show the appropriate shape
with

ActivePresentation.Slides (2) .Shapes (6) .Visible = True

and use JumpToMenu to return to the menu slide.

The tricky part about this example is getting the shape numbers to match
the shapes that you use. Figuring out the number of each shape is discussed in
“Referencing Objects by Number” in Chapter 6.

If you prefer to change the color of your buttons instead of showing a goofy
icon, you can do that with a very small change to the above code. In the
Initialize procedure, instead of hiding objects, we can set the color of our
menu buttons to blue, for example:

ActivePresentation.Slides (2) .Shapes(2) .Fill.ForeColor.RGB = vbBlue
ActivePresentation.Slides (2) .Shapes(3) .Fill.ForeColor.RGB = vbBlue
ActivePresentation.Slides (2) .Shapes(4) .Fill.ForeColor.RGB = vbBlue

Note that the shape numbers are 2, 3, and 4 because we are referring to the num-
bers of the buttons, not the numbers of the smiling sunshines. In our
ReturnFromMenuFromPart procedures, we need to change the color of the
buttons to a different color, using lines like the following:

ActivePresentation.Slides (2) .Shapes(2) .Fill.ForeColor.RGB = vbMagenta

Now that your students know where they have been, in the next section, we
will add a few lines so they have to complete the tutorial before taking the quiz.

Learn First, Ask Questions Later: The Tutorial and Quiz 113

Hide the Quiz Button

With a button on the menu slide, your students can choose to take the quiz
whenever they want. Sometimes this is appropriate; sometimes it is not. For those
times when you want your students to complete the tutorial before taking the quiz,
we will combine variables (to keep track of what the students have done) with hid-
ing and showing objects (see “Hiding and Showing PowerPoint Objects’ in Chapter
6). We will hide the Quiz button on the menu slide until all sections of our tutorial
have been visited. Use the code in Figure 7.7 (page 114) to do this. Lines and proce-
dures noted with the comment * ADDED have been added to the code from the previ-
ous example.

Note that this figure does not include the RightAnswer, WrongAnswer,
DoingWell, and DoingPoorly procedures. Either use the simple ones from
the previous example (see Figure 7.6, page 111) or use more complicated quiz-
zes from other examples in this chapter.

If you are adding onto the previous example, all you need to change is the
VBA; all the buttons are tied to the same procedures. If you are starting with a
new file, use Figure 7.5 (page 110) to guide you in creating the PowerPoint
slides and tying the buttons to procedures.

The variables visitedPartl, visitedPart2, and visitedPart3 are
the keys to this example. They tell us whether the student has completed each
part of the tutorial. They are setto False inthe Initialize procedure because
no part of the tutorial has been completed. They are set to True in the
ReturnToMenuFromPart procedures to indicate when each part of the tutorial
has been completed.

Finally, three new procedures have been added: HideQuizButton,
ShowQuizButton, and DoWeShowQuizButton. In my example, the Quiz but-
ton is shape number 5 on the menu slide (slide number 2) so I can hide it in
HideQuizButton with

ActivePresentation.Slides (2) .Shapes(5) .Visible = False

Change False to True to show it, and change 5 to some other number if your
Quiz button is not shape 5. Also note that the Quiz button should be hidden at the
beginning so HideQuizButton is added to Initialize.

DoWeShowQuizButton asks a three-part question: Is part 1 of the tutorial
completed, is part 2 of the tutorial completed, and is part 3 of the tutorial completed?
If all three parts have been completed—(visitedPartl, visitedPart2, and
visitedPart3 have each been set to True)—then we show the Quiz button. If
any part has not been completed (any visitedPart is not True), then we hide
the Quiz button.

Ple visicedPartl As Boclean “ALDED
bis visitedpartd A Boolesn *ADIED

Tk GeEZEsEEad ()
Initialize
Wi T ama
Aotivalressncat jon 8] idedhooll indow. Vimd Hext

gub Initializeri
Hidefu irBytton. “ADDED
visitedPacrtl = False “ADDED
viaitedPartd = Falae “ALDED
vinitedPartE = Falae “ALDED
ActivePressntat ion 9liden {2} Jihapen (6) . Visible = False
ACtiveEPr=ssntat ion Bl ides (2} Ahapas 17} Yisible = Fslas
ActivePrasentation. 3lides [2) cAhapss (B} Visibhls = Falss
End Sukb
b Yourhams |)
usarksEs = INpULHSR(pIORPTL="TyEE YOUE Naas™)
End Eub o
Fdb HidelulEButesad) "RCOED
RotivePresantat lon . Slides {2 Bhapes |5) .Vis ihl_n = Falms
End Eih)
Sub EShowguizEyTIon () TARED
Aot ivetraasntat ion 5] iden (2] Jahapea (3 .vinlble = Trus
Jub DoNeibhowtaiizButtond) “ANDUD
If wisitedPartl & True And yvisitedrarkl = Trus
Ani wiaitedParTi = True Then
LT TR T]
Elan
HidsOulsBunton
End IF
End Bub
fub ReturnToMenuFroafaccli)
visitedPartl = Teus "ANDED
Aetiveloeaantation.] ides (2} . Shapes |Gk . Vialhle = Tros
JURETOMAR

gub RetirnToManufcomPacks {)
visicedPEet = Terua 'ALDED
Anuu_!'rﬂ!unl:m,!udu [Eh.Ahapes [T} . Vialhle = Tris
JuspTeMa by

fub RebucoToMenuFromPartI)
wvisitedFartI = Truys "AIDED)
ActiveRteasncation . Slides (2} . Shapes [8F Wiaible = True
JuspPoliamu
b Ju.iﬁ"l'l:ﬂfﬂhh 13
DoMedhowin i zButtom “RDDED
l.':l'_l.l.lai'i'uerrtltim-!liqm1m.\':w‘mtollm (e}
End Zuh

Figure 7.7. VBA Code to Hide and Show the Quiz Button

T Tin tnechame Ay 3tcing . y
Pia wisioedbartl Aa Boolsan “ARDED
]

Conclusion 115

If your tutorial has more parts, you will need to do the following:

¢ Add more variables, such as visitedPart4 and visitdPart5,
and declare them with Dim statements.

e Initialize the added variables in the Initialize procedure, with
lines like visitedPart4 = False.

* Add more procedures (such as ReturnToMenuFromPart4 and
ReturnToMenuFromPart5) to return to the menu from the added parts
of the tutorial. Be sure to tie the menu buttons to those parts of the tutorial.

* Add more parts to the If question in DoWeShowQuizButton. For
example:

If visitedPartl = True And visitedPart2 = True
And visitedPart3
And visitedPart5h

True And visitedPart4 = True _
True Then

* Add more smiling sunshine pictures next to the additional menu but-
tons. Hide them in the Initialize procedure and show them in the
additional ReturnToMenuFromPart procedures.

Of course, this same structure does not need to be used for a tutorial and
quiz; it could be used for anything with several parts. If you want your students
to complete certain parts before completing some other parts, you can use ex-
actly the same code.

Conclusion

You now have seen several examples of ways to create tutorials and quiz-
zes. You can create different kinds of questions and keep and report scores in
different ways. In the next chapter, you learn a few more scripting tricks and get
some more explanation about some programming structures.

116 Quizzes and Tests

Exercises to Try

U In the section “Try Again and Again: Answer Again After It’s
Right,” we created a simple multiple-choice quiz that only
counts the student’s first try on each question. Try to add two
more multiple-choice questions to the quiz. Remember that you
will need additional variables g3answered and g4answered as
well as RightAnswer3, WrongAnswer3, RightAnswer4, and
WrongAnswer4 procedures.

U In the section “Short-Answer Quiz Questions,” we added
short-answer questions to our multiple-choice quiz. Try adding
two more short-answer questions to your quiz. Remember that
you will need additional Question, RightAnswer, and
WrongAnswer procedures.

U In the section “How Did You Do: Reporting Results to the
Teacher,” we created a slide with the results that was ready to be
printed. Follow the directions in that section to add two addi-
tional questions to your quiz. One should be a multiple-choice
question, and the other should be a short-answer question.

% In the section “Learn First, Ask Questions Later: The Tutorial
and Quiz,” you created a simple tutorial and quiz with the shapes
hidden and shown—to indicate which sections of the tutorial
were completed—and a Quiz button that is hidden until all sec-
tions of the tutorial are finished. Add a fourth section to your tu-
torial and use one of the more complex quiz structures (at least
something that keeps score) for your quiz.

48

More Tricks for Your
Scripting Bag

Introduction

In Chapter 7 you used all the tricks you had learned in previous chapters to
create quizzes and tests. This chapter will add to your scripting bag of tricks to
help you do more with the examples from previous chapters, create some of your
own examples, and understand some of the things you have already used. You
will learn more about If statements and loops (like the while loops you have
already seen) and about timed functions, automatically saving or not saving your
presentation, naming objects and slides, and random numbers. The chapter con-
cludes with a complete example that uses random numbers to randomly show
different questions from a large pool.

Vocabulary
* Array * Loop
 Conditional * Nested If
* Dirty * Parameter

* Infinite loop * Stopping condition

118 More Tricks for Your Scripting Bag

Conditionals: The If Statement

It is common to want to do one thing under certain circumstances and
something else under other circumstances. If it is raining, we will play inside.
Otherwise, we will play outside. We like to do this in VBA as well. We might
say:

If raining = True Then
PlayInside

Else
PlayOutside

End If

The 1£ statement asks a question. If the answer is yes, we do the first thing. If the
answer is no, we do what comes after the E1se. The above code is exactly the
same as the English sentences:

If it is raining Then
We will play inside
Otherwise
We will play outside

The question can be anything that returns a True or False answer. We might
compare the value of a variable to something. For example:

If numCorrect > 6 Then

MsgBox ("You got a lot of gquestions right.")
Else

MsgBox ("You can do better than that.")
End If

In this case, if the variable numCorrect (presumably that was used by some
other procedures to count the number of questions that were answered correctly)
is greater than 6, a MsgBox will pop up saying “You got a lot of questions right.”
If the variable numCorrect is not greater than 6 (it is 6 or less), then the MsgBox
will say “You can do better than that.”

This can be extended to check more than one thing using ElseIf. You
might say: if it is raining, we will play inside; if it is snowing, we will build
snowmen; otherwise, we will play baseball.

If raining = True Then
PlayInside

ElseIf snowing = True Then
BuildSnowmen

Else
PlayBaseball

End If

Conditionals: The I£ Statement 119

In this case, we ask one question. If the answer is yes, we do the first thing. If the
answer is no, we ask a second question. If the answer to the second question is
yes, we do the second thing. If the answer to the first question is no, and the an-
swer to the second question is no, we do the third thing. Note, we can ask as
many questions as we want by putting more and more E1seIf statements. Imag-
ine a grading program that converts numbers to letter grades:

Sub WhatsMyGrade ()
If gradeNum >= 90 Then
MsgBox ("You got an A")
ElseIf gradeNum >= 80 Then
MsgBox ("You got a B")
ElseIf gradeNum >= 70 Then
MsgBox ("You got a C")
ElseIf gradeNum >= 60 Then
MsgBox ("You got a D")
Else
MsgBox ("You got an F")
End If
End Sub

This assumes that a variable named gradeNum has been given a value some-
where else. It then asks the question, is this grade greater than or equal to 90? If
the answer is yes, it pops up a box with the message “You gotan A,” and it stops.
However, if the answer is no, it asks the next question: is this grade greater than
or equal to 807 If the answer to this question is yes, it pops up a box with the mes-
sage “You gota B,” and it stops. It keeps asking questions as long as the answers
are no. If all the answers are no, it reaches the E1se statement and pops up a box
with the message, “You got an F.”

Note that you can do more than one thing in response to a yes answer. You
might, for example, pop up a MsgBox and then move to the next slide under one
condition, but pop up a different MsgBox and then move to the previous slide un-
der a different condition:

If gradeNum >= 90 Then
MsgBox ("You got an A.")
ActivePresentation.SlideShowWindow.View.Next
Else
MsgBox ("You need to work harder.")
ActivePresentation.SlideShowWindow.View.Previous
End If

Because you can do several things in response to a yes answer, you can do sev-
eral complicated things. The above example uses two simple statements, but you
can have as many statements as you want. Some of these statements might be
complicated structures like loops (see the next section) and other If statements.
When you put an If block inside an If block, itis called a nested I£. If the an-
swer to your question is yes, you might want to ask other questions:

120 More Tricks for Your Scripting Bag

If gradeNum >= 90 Then

MsgBox ("You got an A.")

If previousGradeNum >= 90 Then

MsgBox ("Good job. Two A grades in a row!")

End If

ActivePresentation.SlideShowWindow.View.Next
Else

MsgBox ("You need to work harder.")

ActivePresentation.SlideShowWindow.View.Previous
End If

Pay careful attention to the way this example is indented. Although you don’t
have to type it indented in this way, it is much easier to understand with the indent-
ing. You can see that the question is asked: Is gradeNum greater than 90? Every-
thing between the first If and the E1se is indented to show that it is what to do if
the answer is yes. Part of what to do is to ask another question. That question asks
if previousGradeNum also is greater than 90. This question will only get asked
if gradeNum s greater than 90. The indenting helps to see the nesting. It is partic-
ularly helpful if the nested 1£ block is more complicated, with its own Else, for
example. The E1se should always be lined up with the I£ with which it goes.

The 1f statement is very powerful. It is one of the things that allows for in-
teraction. Without conditional statements, every user would do exactly the same
thing as the previous user.

Looping

If statements allow you to make choices based on whether or not a condi-
tion is true. Looping allows you to do something over and over again. How many
times is based on a condition, that is, a question like what you ask in an If state-
ment. This is known as the stopping condition. In some types of loops (such as a
While loop), this question is phrased as a keep going question, and in other
types of loops (such as a For Next loop), the condition is based on how many
times you say you want to loop. However the question is phrased, the loop needs
to know when to stop.

While Loops

There are several types of loops, and you might want to explore different
ones, but once you know one, you can do just about anything you might want to
do. Let’s look at the while loop. The Wwhile loop asks a question and keeps loop-
ing while the answer to the question is yes. My four-year-old daughter might ask
“Is it still raining?” She might ask this over and over again until it has stopped rain-
ing. As long as it is raining, she will add another block to her tower and ask again:

While StillRaining
AddBlockToTower

Wend

PlayOutside ()

Looping 121

In this case, the question is: Is it still raining? If the answer is yes, add another
block to the tower. The Wend statement stands for While END and simply limits
the loop. Whatever is between the while and Wend statements will happen over
and over again until the answer to the question is no. Many things can happen
between a While and Wend; it is not limited to one statement. This loop will
keep executing as long as it is still raining. Once it stops, the answer to the ques-
tion will be no, and whatever is after the wend will be executed. In this case, my
daughter will finally go play outside.

We could use this to ask a question until the right answer is entered. For
example:

Sub HowManyPlanets ()
Dim answer As String

answer = ""
While answer <> "nine" And answer <> "9" And answer <> "Nine"
answer = InputBox

("How many planets are there in our solar system?")
Wend
End Sub

In this example, the procedure HowManyPlanets contains a While loop with a
slightly complicated question. The question basically asks: Is the answer wrong?
That is, is whatever the user typed not “nine,” ““9,” or “Nine”? If it is not any of
those, it will ask for the answer again and again and again until one of those an-
swers is entered in the InputBox.

Sometimes we might not want our users to get stuck in a loop if they really
don’t know the answer. We might want to limit the number of times we ask the
question. In this example, the user will be asked three times, so our While ques-
tion checks to be sure that the answer is wrong and that we have asked fewer than
three times.

Sub HowManyPlanets ()
Dim answer As String
Dim count As Integer

answer = ""

count = 0

While answer <> "nine" And answer <> "9" And answer <> "Nine" _
And count < 3

answer = InputBox _
("How many planets are there in our solar system?")
count = count + 1
Wend
End Sub

The variable count is a number (an Integer). We started it out as 0 (count =
0) because at the beginning, we haven’t asked at all. Then we check to see
whether the answer is not one of the right answers (nine, 9, or Nine), and we also
check whether the count is still less than 3. If the answer is still wrong, and the

122 More Tricks for Your Scripting Bag

count is still Iess than 3, we ask for the answer again and add 1 to count (count
= count + 1). Once we have asked three times, count will be 3. Then, the
question in our While statement will be no because count < 3 will be False.
In that case, we will stop looping.

When the conditions are complicated, we might want to do what we have
done with the YourName procedure (see Chapter 5):

Sub YourName ()
Dim done As Boolean

done = False
While Not done
userName = InputBox (prompt:="Type your name", _
Title:="Input Name")

If userName = "" Then
done = False
Else
done = True
End If
Wend
End Sub

In this procedure, we use the variable done to determine whether we are finished
looping. The I£ block could have all been included in the while statement, elimi-
nating the need for done. This would have made for short VBA code, but it would
have been very difficult to understand, particularly if the stopping condition was
more and more complicated. Setting up an If block allows you to check as many
conditions as you like and set done based on those conditions. Then, the only
question for while is: Are we done or not? If we are not done, keep looping.

Do Loops

Do loops are similar to Wwhile loops. They allow you to specify either a
While condition (keep going while something is True) or an Until condition
(keep going until something is True). They also let you specify the condition
(ask the stopping question) at the beginning or the end. If the condition is at the
beginning, the loop might never run (not even once). If the condition is at the
end, the loop will always run at least once. Here are some simple examples:

Do

answer = InputBox("How many planets are in the solar system?")
Loop Until answer = "9"
Do

answer = InputBox("How many planets are in the solar system?")

Loop While answer <> "9"

Do While count < 3
answer = InputBox ("What do you like to eat?")
count = count + 1

Loop

Looping 123

Do Until count >= 3
answer = InputBox("What do you like to eat?")
count = count + 1

Loop

In the first example, the loop will run at least once and ask the question: How
many planets are in the solar system? After running the loop once, it will check to
seeif answeris 9. Ifitis, it will stop. Ifitisn’t, it will loop until the answer is 9.

In the second example, the loop will run at least once and ask the question:
How many planets are in the solar system? After running the loop once, it will
check to see whether answer is not 9. It will keep looping while the answer is
not 9. Note, this works exactly the same as the first example, but sometimes it is
easier to ask a positive question than a negative question, particularly if the ques-
tion has many parts with And and Or.

In the third and fourth examples the condition will be checked before the
loop runs. In the third example, the loop will only run if count is less than 3, and
it will keep looping while count is less than 3. In the fourth example, the loop
will stop running if count is greater than or equal to 3, and it will keep looping
until count is greater than or equal to 3. Like the first two examples, these ex-
amples have exactly the same results, but sometimes it is easier to ask a positive
question, and sometimes it is easier to ask a negative question.

For Next Loops

Sometimes you have a specific number of times you want to loop. For
Next loops allow you to do this and keep a count of the loop. This could be done
withawhile or Do loop by adding one to a count variable inside the loop, but it
can be easier with a For Next loop.

A simple example of a For Next loop follows:

For i = 1 To 10
MsgBox ("Counting..." & i)
Next i

This uses the variable i and counts from 1 to 10. That is, i starts out at 1, and the
loop keeps looping (everything between the For line and the Next line is run)
over and over again, adding 1 to i, up to and including the time that 1 becomes
10. Next 1 says to go back to the beginning of the loop and increase i. As with
all the other loops, you can put as many lines as you like between the For line
and the Next line, and all those lines will be executed over and over again.

For Next, Do, and While loops can get more complicated, but these basic
loops should suit most of your purposes.

124 More Tricks for Your Scripting Bag

Infinite Loops

Before we leave looping, a word of warning about infinite loops: In all of
our loops, we have set stopping conditions; that is, we have told the loop when to
stop looping. What if the stopping condition is never met? Then you have an in-
finite loop, a loop that never stops. Here is a simple example (don’t type this):

While 8 > 7
MsgBox ("Eight is still greater than seven.")
Wend

Because 8 > 7 is always True (i.e., 8 is always greater than 7), this loop will
never stop. Usually, you won’t have something so obvious. You will either type
something wrong (perhaps > when you meant <), or you will have a complicated
expression with variables, and you won’t realize that the condition for stopping
never can be met.

If you get stuck in an infinite loop, it will appear that PowerPoint has
frozen. In all likelihood, you will have to force PowerPoint to quit. On a Win-
dows computer, you can use Ctrl-Alt-Delete (i.e., hold down the Ctrl and Alt
keys while hitting the Delete key). Depending on the version of Windows you
are running, you will either restart your computer or be given the option to stop
an unresponsive application (PowerPoint, in this case). If you are on a
Macintosh, you will have to hit Command-Option-Esc (i.e., hold down the Com-
mand and Option keys while hitting the Esc key; note that the Command key is
the one with the picture of the apple on it). If you do this, you will lose any
changes you made to your presentation since you saved it last. That is why it is
very important to save changes often, particularly when you are working with
loops. In fact, when testing out a loop, you should probably save your changes
before you put PowerPoint in Slide Show View.

Parameters

Sometimes a procedure has all the information it needs when you write it.
Sometimes it gets information from variables where we have stored information
(as long as the variables are declared at the beginning of the module). At other
times we want to give a procedure extra information as we go. We can do this
with something called a parameter. A parameter is extra information sent to a
procedure when it is called. We have used parameters when calling procedures
(something as simple as a MsgBox takes a parameter: the text to display), but we
have not used parameters in procedures we have written. Parameters are a very
useful tool for programmers, but they can be a bit tricky. Following is a brief ex-
planation of parameters, so when you see them in examples (such as the timed
functions in the next section), you’ll understand them.

Imagine that you wanted to put up a MsgBox with different messages for
different occasions. Perhaps the message is the same except for one thing. For

Timed Functions 125

example, you might want to say, “You are doing well, Ella” at some point and
“You are doing poorly, Ella” at another time. We have done this with two sepa-
rate procedures in the past, but we could write one procedure with a parameter:

Sub Doing(doingHow As String)
MsgBox ("You are doing " & doingHow & ", " & username)
End Sub

For something this simple, the parameter may not be worth the effort, but it can
be very useful if the procedure that takes the parameter is more complicated. In
this case doingHow is the parameter. It is a String because it is declared in the
Sub statement to be a String, so another procedure would call doingHow with
a String in parentheses. For example Doing("well") would pop up a
MsgBox that says, “You are doing well, Ella” (assuming the userName was
“Ella”) . This might be called from a procedure that included the following I £
block:

If numCorrect > 10 Then
Doing ("superbly")

ElseIf numCorrect > 8 Then
Doing ("well™")

ElseIf numCorrect > 5 Then
Doing ("OK")

ElseIf numCorrect > 3 Then
Doing ("Poorly")

Else
Doing ("Very Poorly")

End If

Parameters can be of any type. We used a String in this example, but you can
pass various kinds of numbers or Booleans or even objects such as shapes. You
can pass more than one parameter as well if you need different kinds of informa-
tion passed to a procedure, but for most of your purposes, if you need a parame-
ter at all, one will suffice. Parameters can be tricky and complicated, so we will
not use them a lot, but now you have a basic understanding of how they work in
case you see them in some examples.

Timed Functions

Most actions in PowerPoint happen because the user did something, such
as pressing a button to go to another slide. Sometimes, however, you want things
to happen whether or not the user has done anything. For example, you might
want a sound to start playing a few seconds after the slide is shown. You might
want the presentation to go from slide to slide on its own. You might want infor-
mation to pop up on the screen, then go away, and then have other information
pop up on the screen.

As soon as the user clicks on a button tied to a script with timing features
(such as the button to go to another slide), you can start anything happening after

126 More Tricks for Your Scripting Bag

any length of time. Of course, the standard “Custom Animation” choice from the
Slide Show menu can allow objects to appear with timing, but you might want to
do more. If you want something to happen after a short delay, you can use the
following procedure:

Sub Wait ()
waitTime = 5
start = Timer
While Timer < start + waitTime
DoEvents
Wend
End Sub

This procedure waits five seconds. Timer is a function that returns the number
of seconds since midnight (e.g., at 12:01 A.M., Timer will return 60). waitTime
is a variable used to tell how many seconds to wait (change the number 5 to any
number to have this procedure wait that number of seconds). At the beginning of
the procedure, the variable start is set to the current time in seconds (as re-
turned by Timer). Next, we loop until the current time is less than the time we
started plus the waitTime (which is five seconds in our example). Inside the
loop (between the while statement and the Wend statement), we run DoEvents.
This lets VBA check to see if anything else is happening, particularly things that
the user might do, such as hit the Escape key or click on another button. If you
don’t want the user to do anything while you are waiting, leave out DoEvents.

Be careful! If you make a mistake (perhaps you set the waitTime to five mil-
lion seconds instead of five seconds or you mistyped Timer in the Do While state-
ment), you could end up in an infinite loop, essentially freezing PowerPoint. If you
feel you must stop the user from doing anything while VBA waits, leave DoEvents
in your procedure until you are sure everything works. Once you are certain every-
thing works, delete the DoEvents line. This will allow you to stop your presenta-
tion by hitting the Escape key while you are still testing your procedure.

Before we continue, get a new PowerPoint presentation and type the Wait
procedure. Then add the following procedure:

Sub HelloWaitGoodbye ()
MsgBox ("Hello")
Wait
MsgBox ("Goodbye")

End Sub

When you run HelloWaitGoodbye, you should see a MsgBox that says
“Hello.” After you click OK to dismiss the MsgBox, you should see a MsgBox
that says “Goodbye,” but only after a delay of five seconds.

Now suppose that you want to wait, but not always for five seconds. You
could write several different procedures (Wait5, Wait10, Wait60, etc.) to wait
different amounts of time, but we can use a simple parameter to write one proce-
dure that can wait different amounts of time.

Saving and Quitting 127

Sub Wait (waitTime As Long)
start = Timer
While Timer < start + waitTime
DoEvents
Wend
End Sub

In this procedure, instead of setting the waitTime to five, we call wait with
however long we want to wait (e.g., Wait (60) would wait sixty seconds).

Timed functions are useful if you want to give your users a chance to do
something before moving on. For example, you might display a text box, wait a
short time, then display a second text box. This allows the user to focus on the
first text box before getting too much information. Be careful with timed func-
tions, because different people read at different speeds. If you set your wait times
too long, some people will get restless waiting for the next thing to happen. If
you set them too short, some people will not have time to finish the first thing.

Some timing can be done automatically without VBA. You can use Custom
Animation to have things appear and disappear as much as you like. However, as
with many things that you can do without VBA, you might find that you can do
more with VBA. For example, you might ask the user how fast to go:

speed = InputBox ("How fast do you read [fast, medium, slow]?")

Now when it is time to wait, you might do something like the following:

If speed = "fast" Then
Wait (5)

ElseIf speed = "medium" Then
Wait (10)

Else
Wait (15)

End If

You should note that wait times are approximate. This does not work well if you
need precise timing, but it should do roughly what you want.

Saving and Quitting

When you use VBA to change your presentation in any way (including
adding shapes, hiding shapes, changing text, etc.), PowerPoint recognizes that
your project has been changed. Whenever a project has been changed,
PowerPoint wants to save it. If you don’t save it, and you exit PowerPoint,
PowerPoint will ask you if you want to save. This is a good thing if you are de-
signing a project and forgot to save before exiting. This might not be such a good
thing if one of your students is running your project.

As the designer of an interactive multimedia project, you should know
when you want to save and when you don’t. In “How Did You Do: Reporting
Results to the Teacher” in Chapter 7, we added a slide to report the results, but

128 More Tricks for Your Scripting Bag

we didn’t want to save the slide. In this case, PowerPoint knows that the presen-
tation has been changed, so we needed to make it think that it was not changed.
Of course, changes that PowerPoint thinks need to be saved do not have to be as
large as adding a slide. Changes as small as hiding or showing an object, such as
a shape that indicates the student has visited part of the tutorial in “Learn First,
Ask Questions Later” in Chapter 7, will make PowerPoint think your presenta-
tion needs to be saved.

In other cases, we might want the changes to be saved. In Chapter 10 is an
example in which important slides are being added to the presentation. As users
go through the project, they might be asked for information, which is stored on a
newly created slide. Later, the designer will go through the presentation and look
at those slides . . . only if they were saved.

Fortunately, it is very easy to control whether or not your presentation is
saved. Four simple procedures will help you:

Sub MakeNotDirty ()
ActivePresentation = True
End Sub

Sub Save ()
ActivePresentation.Save
End Sub

Sub Quit ()
Application.Quit
End Sub

Sub QuitAndSave ()
Save
Quit

End Sub

In computer terms, a presentation that is changed but not saved is called dirty.
The status of the current presentation (whether it is dirty or not, i.e., whether it
has been changed or not since the last time it was saved) is stored in the variable
ActivePresentation.Saved. Even if the presentation has been changed, we
can fool PowerPoint into thinking that it hasn’t been changed by setting the
ActivePresentation.Saved to True as in the MakeNotDirty procedure
above. If you call this procedure (or simply put the line ActivePresentation.
Saved = True into some other procedure), PowerPoint will not ask you if you
want to save the presentation when you quit. Be sure you do this every time you
make a change because the next change you make will make the presentation
dirty again, setting ActivePresentation.Saved back to False.

You probably want to do this right away when you make a change. In fact,
you should do it in the procedure that makes the change. For example:

Saving and Quitting 129

Sub StartAgain()
ActivePresentation.SlideShowWindow.View.GotoSlide (1)
ActivePresentation.Slides (printableSlideNum) .Delete
ActivePresentation.Saved = True

End Sub

This procedure is from the example in “How Did You Do: Reporting Results to
the Teacher” in Chapter 7. This procedure jumps to the first slide and deletes the
last slide (which had been created temporarily in an earlier procedure). Once it
deletes the last slide, the presentation is dirty, but we don’t want anyone to be
asked to save it. By setting ActivePresentation.Saved to True, the stu-
dents won’t be asked.

For the cases where you want to save a presentation, you can use the Save
procedure above. As long as the place where the presentation is running is a lo-
cation that can be saved (unlocked disk, network folder where the user has write
privileges, etc.), Save will save the presentation without the user even knowing
(unless it is saving something to a slow device like a floppy disk, in which case it
might take a few seconds to save). You would use this (or simply the line
ActivePresentation.Save) immediately after doing something that you
want saved. An example of this can be found in Chapter 10:

Sub WorkTogether ()
GetNameEmailIdea
GoToWorkTogether
AddWorkTogetherSlide
Save

End Sub

In this example, information is collected (using the GetNameEmailIdea proce-
dure), the presentation jumps to another slide (using the GoToWorkTogether
procedure), and a new slide is added to the presentation (using the
AddWorkTogethersSlide procedure, which is where the presentation becomes
dirty). Finally, the presentation is saved (using the Save procedure). The saving
happens automatically without the user’s knowledge. Of course, the Save pro-
cedure from above must be included in your VBA module.

Finally, you might want to quit the presentation (possibly when a user
presses an Exit button). If you weren’t worried about saving, you could simply
hyperlink a button to End Show (using traditional PowerPoint and no VBA). If
you are worried about saving, you will need something like the last two proce-
dures. Quit will quit the presentation without saving and without asking the
user whether or not to save. Be careful with this. If you are trying out your Quit
procedure while you are creating your presentation and you haven’t saved, your
changes will be lost. This includes changes to your VBA code. Therefore, you
should always save your presentation before trying it out.

QuitAndSave simply calls our Save procedure before quitting, so the pre-
sentation will be saved. Note that Save ignores whether or not the presentation

130 More Tricks for Your Scripting Bag

is dirty; it saves regardless. Thus, you don’t want to save if you have made
changes that you don’t want saved (even if you have called MakeNotDirty).
Being sure that changes are saved or not saved as you, the designer, know
they should be is very important. Your students won’t know whether they should
save or not, and they shouldn’t be bothered by being asked. The procedures in
this section will help you manage the saving or not saving of your presentation.

What’s in a Name? Finding and Changing
Object and Slide Names

Object Names

In Chapter 6 we discussed how to reference objects by their names, and we
noted how difficult it is to remember the name of an object. The following
scripts can be used to find the name of an object and set the name of an object.
Note that all other scripts in this book are designed to be run in Slide Show View.
These scripts are designed to be run in Edit View.

The two procedures that we need are GetObjectName and
SetObjectName. GetObjectName finds out what the name of an object is.
SetObjectName asks you to type a new name for an object.

If you run the GetObjectName script while an object is selected, a
MsgBox will pop up with the object’s name. If you run SetObjectName, an
InputBox will allow you to enter a name for an object. These scripts check to
make sure that one and only one object is selected, because you can’t get or
change the name of more than one object at a time.

Sub GetObjectName ()
If ActiveWindow.Selection.Type = ppSelectionShapes

Or ActiveWindow.Selection.Type = ppSelectionText Then

If ActiveWindow.Selection.ShapeRange.count = 1 Then
MsgBox (ActiveWindow.Selection.ShapeRange.Name)
Else
MsgBox ("You have selected more than one shape.")
End If
Else
MsgBox ("No shapes are selected.")
End If
End Sub

Sub SetObjectName ()
Dim objectName As String

If ActiveWindow.Selection.Type = ppSelectionShapes _
Or ActiveWindow.Selection.Type = ppSelectionText Then
If ActiveWindow.Selection.ShapeRange.count = 1 Then
objectName InputBox (prompt:="Type a name for the object")
objectName Trim(objectName)

What’s in a Name? Finding and Changing Object and Slide Names 131

If objectName = "" Then
MsgBox ("You did not type anything. " &
"The name will remain " & _
ActiveWindow.Selection.ShapeRange.Name)
Else
ActiveWindow.Selection.ShapeRange.Name = objectName
End If
Else
MsgBox

("You can not name more than one shape at a time. "
& "Select only one shape and try again.")
End If
Else
MsgBox ("No shapes are selected.")
End If
End Sub

If you are trying to understand these procedures, pay careful attention to the
nested If statements and how they are indented in the example.

The heart of these procedures is ActiveWindow.Selection.
ShapeRange .Name. This looks at the Name property of the currently selected
shape. In GetObjectName, we simply return this name in a MsgBox. In
SetObjectName, we set this with whatever is typed in an InputBox. The rest
of each of the procedures is to make sure an object is selected and to clean up
what you typed for the object’s name.

If you run the GetObjectName script while an object is selected, a
MsgBox will pop up with the object’s name. You can then use this name in
quotes instead of an object’s number. For example, if you wanted to hide an ob-
ject named “Picture 6,” you can use:

ActivePresentation.SlideShowWindow.View.Slide. _
Shapes ("Picture 6") .Visible = False

As you recall from Chapter 6, once you add an object to your slide, its name, un-
like its number, will not change unless you change it, so this line of code will al-
ways work even if you change the animation order or delete other objects on the
slide. Even if you don’t name your own objects, each new object that is added to
a slide is given a name that is different from all other objects that have ever been
added to that slide.

When you run SetObjectName, an InputBox will allow you to enter a
name for an object. Trim is used to delete any extra spaces before and after the
name you type. The procedure also checks to make sure you typed something,
because you don’t want to give an object a blank name.

GetObjectName and SetObjectName check to make sure that one and
only one object is selected, because you can’t get or set the name of more than
one object at a time. If you are looking for a simpler way to do the same things,
you can try the following scripts, but you are responsible for making sure that
you have selected one and only one object.

132 More Tricks for Your Scripting Bag

Sub GetObjectName ()
MsgBox (ActiveWindow.Selection.ShapeRange.Name)
End Sub

Sub SetObjectName ()
Dim objectName As String

objectName = InputBox (prompt:="Type a name for the object")
objectName = Trim(objectName)
If objectName = "" Then
MsgBox ("You did not type anything. The name will remain " & _
ActiveWindow.Selection.ShapeRange.Name)
Else
ActiveWindow.Selection.ShapeRange.Name = objectName
End If
End Sub

If you try to run either of these procedures without having one object selected,
you will get an error message. If you try to give an object the same name as an-
other object on that slide, you will also get an error message, so be sure to give
each object on a slide a different name.

Because these procedures run in Edit View in PowerPoint (not from Slide
Show View or from the VBA Editor), we cannot create a button on a slide to run
them. The easiest way to run a script in Edit View is to select “Macro” from the
Tools menu and choose “Macros” from the flyout menu (or hit Alt-F8 on a Win-
dows computer or Option-F8 on a Macintosh). Select the procedure name that
you want to run, and click on the Run button (see Figure 8.1).

Figure 8.1. Running a Macro in Edit View

What’s in a Name? Finding and Changing Object and Slide Names 133

Slide Names

Just as object numbers can change, slide numbers can change as well. If you
are trying to go to a particular slide and you use a slide number, you might have a
problem if you delete or insert slides before that slide. Slide names never change
unless you change them. When a slide is created, it is assigned a name (Slidel,
Slide2, Slide3, etc.). These names are assigned in the order the slide is inserted,
not the order in which the slide is within the presentation. For example, if you
create a slide, it will be named “Slidel.” If you create another slide, it will be
named “Slide2.” If you create a third slide between “Slide1” and “Slide2,” it will
be the second slide in the presentation, but it will be named “Slide3.”

If you move slides around a lot, you will have a hard time remembering
their names. Use GetS1ideName and SetS1lideName to find out the name of a
slide and change the name of a slide:

Sub GetSlideName ()
MsgBox ActiveWindow.View.Slide.Name
End Sub

Sub SetSlideName ()
Dim slideName As String

slideName = InputBox (prompt:="Type a name for the slide")
slideName = Trim(slideName)
If slideName = "" Then

MsgBox ("You did not type anything. " & _

"The name will remain " & _
ActiveWindow.View.Slide.Name)
Else
ActiveWindow.View.Slide.Name = slideName
End If
End Sub

These procedures are very similar to GetObjectName and SetObjectName.
They also run in Edit View of PowerPoint, so they must be run with the “Mac-
ros” option from the “Macro” flyout menu of the Tools menu (see Figure 8.1).

Once you have a slide’s name, you can use it in two ways. If you want to ac-
cess the slide, such as to hide and show objects on it, you can use the name in
place of the slide number. For example, in “Learn First, Ask Questions Later” in
Chapter 7, we wanted to hide the marks on the menu slide to indicate that those
sections of the tutorial had not been visited. We used:

ActivePresentation.Slides (2) .Shapes (6) .Visible = False

This hides shape 6 on slide 2. If we were to name our menu slide “Menu” and the
object to be hidden “MenuMark1,” we could use the following line instead:

ActivePresentation.Slides ("Menu") .Shapes ("MenuMarkl") .Visible = False

134 More Tricks for Your Scripting Bag

It is slightly more difficult to jump to a named slide. ActivePresentation.
SlideShowWindow.View.GotoSlide requires a number; that is, it cannot
use the name of the slide in place of the number. Fortunately, we can get the slide
number by using the name. To jump to the slide named “Menu,” we could use
the following two lines:

theSlideIndex = ActivePresentation.Slides ("Menu") .SlideIndex
ActivePresentation.SlideShowWindow.View.GotoSlide (theSlideIndex)

Although this is a little more complicated than simply using a number, it is a lot
safer because slide names never change unless you change them.

You never have to use object names or slide names. You can do everything
you want with numbers. However, as you make more complicated presentations
with more slides and more objects, and you begin to change slides and objects
around, using names will save you a lot of grief. When you move objects, delete
slides, reorder slides, insert slides, change the animation order of objects, etc.,
your slide names will remain the same, and your VBA code will continue to
work.

Arrays

Computer programs can use many different kinds of data structures. Under-
standing data structures is an important part of computer programming. How-
ever, throughout this book I have avoided turning you into a programmer and
only shown you what you need to know to be a scripter. The topic of data struc-
tures is something you can avoid, but if you understand some basic data struc-
tures, they can make your life easier. In fact, some of the examples that you have
seen could have been simpler with some more advanced data structures. I have
made some earlier examples longer so that they would be easier to understand.

Data structures are a way to store information. In Chapter 5 we used the box
analogy to show how variables can be used to store information, but sometimes
information can be stored more easily in something other than a single box. A
collection of numbered boxes might be more suitable. This collection of num-
bered boxes is an array. You might think of an array as an egg carton, with sec-
tions for each of several eggs.

In several earlier examples, such as the example in “Try Again and Again:
Answer Again After It’s Right” from Chapter 7, we created our own numbered
variables. In that example, we used glAnswered and g2Answered to store the
information about whether question 1 was answered and whether question 2 was
answered. If we had more questions, we would add more variables. This is easy
to understand but difficult to type, particularly if we have a lot of questions. This
could be simplified with an array.

Arrays 135

The first step is to declare the array. Suppose we have five questions. With-
out an array we would do the following to declare our five variables:

Dim glAnswered As Boolean
Dim g2Answered As Boolean
Dim g3Answered As Boolean
Dim g4Answered As Boolean
Dim gS5Answered As Boolean

If we were to use an array, we would have one line:

Dim gAnswered(5) As Boolean

This will give us an array that contains six boxes, numbered O through 5:
gAnswered (0), gAnswered(l), gAnswered(2), gAnswered(3),
gAnswered (4), and gAnswered (5). Note that we really only need five
boxes in our example, and we got six. There are many ways to avoid getting the
extra box, but unless you are an aspiring programmer, the easiest thing to do is
simply ignore box number O.

Now, we can shorten our Initialize procedure. It won’t be shorter with
two questions (or significantly shorter with five), but when you create some-
thing with ten or twenty questions it will be much shorter:

Sub Initialize()
Dim i As Long

numCorrect = 0
numIncorrect = 0
For i = 1 to 5
gAnswered (i) = False
Next i
End Sub

This procedure uses a For loop, just like what we saw above in “Looping.” It
loops through each of the members of the gaAnswered array and sets each to
False. In the original version, every time you added a new question, you would
need to add a new Dim statement and a new line in Initialize. Now, the only
thing you have to change is the number “5” in your Dim statement and in the For
line of your Initialize procedure.

Having a separate variable for each question was only a little inconvenient.
The biggest inconvenience was having a separate RightAnswer and
WrongAnswer procedure for each question. We needed this

1. to assign True or False to the correct gAnswered variable;

2. toknow which question was being answered so we could know which
was the appropriate gAnswered variable for number 1; and

3. in later examples, to assign the actual answer to the correct answer
variable.

136 More Tricks for Your Scripting Bag

Our array takes care of number 1. Number 2 can be handled easily if our
questions are all in order. In our examples with the questions beginning on slide
2, each question is one less than the slide number (i.e., question 1 is on slide 2,
question 2 is on slide 3, etc.), so to get the question number, we simply subtract
one from the slide number (ActivePresentation.SlideShowWindow.
View.Slide.SlideIndex - 1). We’ll take care of number 3 in the next section.

Using the Dim statements and Initialize procedure from above and the
GetStarted, YourName, DoingWell, and DoingPoorly procedures from
any of the earlier examples, we can use the following RightAnswer procedure
and WrongAnswer procedure to replace all the specialized RightAnswer and
WrongAnswer procedures. The only thing you ever have to change is the num-
ber 5 in the Dim statement and the Initialize procedure. Just make this num-
ber equal to the number of questions you have.

Sub RightAnswer ()
Dim thisQuestionNum As Long

thisQuestionNum =
ActivePresentation.SlideShowWindow.View.Slide.SlideIndex - 1

If gAnswered(thisQuestionNum) = False Then
numCorrect = numCorrect + 1

End If

gAnswered (thisQuestionNum) = True

DoingWell

End Sub

Sub WrongAnswer ()
Dim thisQuestionNum As Long

thisQuestionNum =
ActivePresentation.SlideShowWindow.View.Slide.SlideIndex - 1

If gAnswered(thisQuestionNum) = False Then
numIncorrect = numIncorrect + 1

End If

gAnswered (thisQuestionNum) = True

DoingPoorly

End Sub

I Don’t Know How Many Questions:
ReDim to the Rescue

It is very nice to cut down on the amount of VBA code that needs to be
changed, but wouldn’t it be nice to have the above procedures work without
changing any VBA code? The problem is that we need to know how many ques-
tions we have so we can declare and initialize our gAnswered array. VBA is
very nice about this; if you don’t know how many items you need in an array, it
lets you tell it whenever you know. We can declare the array with the following
Dim statement (note that nothing is between the parentheses):

Dim gAnswered() As Boolean

I Don’t Know How Many Questions: ReDim to the Rescue 137

This says that we need an array gAnswered to hold Boolean values, but we
don’t know how many values we’ll need to hold. When we do know how many
values, we can use the ReDim statement to tell VBA.

The question is, how and when do we know how many values we need?
The answer is that we know right away, and we can tell by how many slides we
have. In our example, we have five question slides, one title slide, and one re-
sults slide, for a total of seven slides. That is, all but two of our slides (the title
slide and the results slide) are question slides. Thus our total number of ques-
tions is the total number of slides minus two:

ActivePresentation.Slides.Count - 2

We can use this in our Initialize procedure by assigning this value to a vari-
able (we’ll use numQuestions), using ReDim to tell VBA how many items we
need in gAnswered, and using this value in our For loop to initialize each item.

Sub Initialize()
Dim i As Long
Dim numQuestions As Long

numCorrect = 0
numIncorrect = 0
numQuestions = ActivePresentation.Slides.Count - 2
ReDim gAnswered (numQuestions)
For i = 1 To numQuestions
gAnswered (i) = False
Next 1
End Sub

Two words of warning about ReDim:

1. Because you have already told VBA what kind of variable
numQuestions is with the Dim statement, you do not tell it again
(notice that ReDim leaves off the As Boolean in our example).

2. ReDim erases the contents of the array, so be sure that you use it be-
fore you put anything in the array.

Using the new Dim statement and the new Initialize procedure, you
never have to change the VBA. This makes it easier for you because you can add
and change questions with no VBA changes, and it turns this into a powerful tool
for your students; they can make their own quizzes that use your VBA (see
Chapter 10 for more about templates). Some of you will want to teach your stu-
dents VBA, but most of you will not. If you can write the code, all they have to
do is create the questions and tie the buttons to the RightAnswer and
WrongAnswer procedures.

138 More Tricks for Your Scripting Bag

Short-answer questions will still need VBA to check the answer. You can
either:

* stick to multiple-choice questions and never touch the above code, or

* use short-answer questions by writing Questionl, Question2,
Question3, etc., procedures for each short-answer question but
having each Question procedure call RightAnswer and
WrongAnswer, not specialized RightAnswerl and
WrongAnswerl, RightAnswer?2 and WrongAnswer2,
RightAnswer3 and WrongAnswer3, etc., procedures.

With either choice, your VBA is greatly simplified. You could probably even
teach your students to copy and paste new question procedures, simply changing
the number of the question in the Sub line and the text for the question and right
answer.

Which Button Did I Press?

The above example works very well when you don’t need to keep track of which
answer was chosen. But what about the example from Chapter 7 in “How Did You
Do: Reporting Results to the Teacher”? In that example, each answer needs to be
stored. Short-answer questions don’t have much of an issue because you already have
to use VBA to check the answer, so you can easily stick the answer in a variable at that
time. But multiple-choice questions are more of a problem. In the example in Chapter
7, we had a different procedure for each button. This is easy to understand, but the
amount of code can be overwhelming if you have a lot of questions.

Fortunately, there is a VBA trick that can save us. Try assigning the follow-
ing procedure to a button. In fact, create a slide with several buttons, add differ-
ent text to each button, and attach this procedure to each button:

Sub WhichButton (answerButton As Shape)
Dim theAnswer As String
theAnswer = answerButton.TextFrame.TextRange.Text
MsgBox ("You chose " & theAnswer)

End Sub

This uses a special trick with parameters (see “Parameters”) . When a button is
pressed, it can pass the button itself as a parameter to the procedure that called it.
Normally, we use VBA to pass parameters (by putting them in parentheses when
we call a procedure), but in this case, clicking the button passes the parameter.
We just have to set up our procedure to store the parameter. In this example, we
used the variable answerButton. Once we have a pointer to the button itself
(i.e., answerButton), we can get the text that is in the button with
answerButton.TextFrame.TextRange.Text. If you have put the answer
in the text of the button, you can use that to get the answer that was chosen.

Which Button Did I Press? 139

Now we can store the answers for a printable slide without adding any extra
code for each multiple-choice question and without adding very much extra
code for each short-answer question. Our code for the simple three-question ex-
ample is a bit longer, but as you add more questions, the overall code will be
much shorter. In fact, just like the previous example, if you only use multiple-
choice questions, you do not have to change the code at all when you add
questions.

The new code follows. The GetStarted, YourName, DoingWell, and
DoingPoorly procedures are the same ones we have used many times before.
We can also use the new RightAnswer and WrongAnswer procedures from the
previous example. However, these procedures will not be tied directly to but-
tons. Instead, for multiple-choice questions we will add two new procedures,
RightAnswerButton and WrongAnswerButton, that will be tied to the but-
tons with right and wrong answers. Here are the new procedures, together with
the Dim statements and a slightly modified Initialize procedure. Use
GetStarted, YourName, DoingWell, and DoingPoorly procedures from
any earlier example, and use RightAnswer and WrongAnswer procedures
from the previous example (see page 136), along with the following:

Dim numCorrect As Integer

Dim numIncorrect As Integer

Dim userName As String

Dim gAnswered() As Boolean

Dim answer () As String 'Array to store answers
Dim numQuestions As Long

Dim printableSlideNum As Long

Sub Initialize()
Dim i As Long

numCorrect = 0

numIncorrect = 0

printableSlideNum = ActivePresentation.Slides.Count + 1
numQuestions = ActivePresentation.Slides.Count - 2
ReDim gAnswered (numQuestions)

ReDim answer (numQuestions)

For i = 1 To numQuestions
gAnswered (i) = False
Next i
End Sub

Sub RightAnswerButton (answerButton As Shape)
Dim thisQuestionNum As Long

thisQuestionNum =

ActivePresentation.SlideShowWindow.View.Slide.SlideIndex - 1
answer (thisQuestionNum) = answerButton.TextFrame.TextRange.Text
RightAnswer

End Sub

140 More Tricks for Your Scripting Bag

Sub WrongAnswerButton (answerButton As Shape)
Dim thisQuestionNum As Long

thisQuestionNum = _
ActivePresentation.SlideShowWindow.View.Slide.SlideIndex - 1
answer (thisQuestionNum) = answerButton.TextFrame.TextRange.Text
WrongAnswer
End Sub

You have already seen (in the RightAnswer and WrongAnswer procedures)
thisQuestionNum used to store the number of the current question. The only
new code is the Dim statement to declare answer as an array and the
answerButton.TextFrame.TextRange.Text to get the text from the but-
ton that was pressed (as described above). In addition, we have done a bit of re-
structuring. In the original example in Chapter 7, each button had its own
procedure, and that procedure took care of storing the answer, keeping track of
which question was answered, and keeping score. We have divided up that
work. Now the RightAnswerButton and WrongAnswerButton procedures
take care of storing the answer, and the Right Answer and WrongAnswer pro-
cedures take care of keeping track of which question was answered and keeping
score.

This division of labor will be important when we add a short-answer ques-
tion. For short-answer questions, we are going to need a Question procedure
for each question. That procedure will ask the question, judge the answer, and
store the answer. When it figures out if the answer was right or wrong, it will
call the RightAnswer or WrongAnswer procedure. So we need the follow-
ing procedures:

e Each short-answer question needs its own Question procedure
(Questionl, Question2, Question3).

e All the multiple-choice questions need one RightAnswerButton
and one WrongAnswerButton procedure, which will be tied to ev-
ery button with a right and wrong answer, respectively.

e All the questions need one RightAnswer and WrongAnswer
procedure, which is called from RightAnswerButton,
WrongAnswerButton, and each Question procedure.

Next, our Question procedures need a slight modification so they can
store the answer in the answer array. Here is an example procedure for
Question3:

Sub Question3 ()
Dim theAnswer As String
Dim thisQuestionNum As Long

thisQuestionNum =
ActivePresentation.SlideShowWindow.View.Slide.SlideIndex - 1

Which Button Did I Press? 141

theAnswer = InputBox (Prompt:="What is the capital of Maryland?",
Title:="Question " & thisQuestionNum)

If gAnswered(thisQuestionNum) = False Then
answer (thisQuestionNum) = theAnswer
End If

theAnswer = Trim(theAnswer)

theAnswer = LCase (theAnswer)

If theAnswer = "annapolis" Then
RightAnswer

Else
WrongAnswer

End If

End Sub

The changes to this procedure from the example in Chapter 7 are simply to ac-
count for the fact that answer is an array now. Nothing else has changed.

The final change to our code comes in the PrintablePage procedure.
You could simply change this procedure to use the array (using answer (1),
answer (2), answer (3), instead of answerl, answer2, answer3), but this
would require you to change the procedure every time you add a new question.
The purpose of complicating our code with arrays was to eliminate any unneces-
sary changing of code. Our new PrintablePage procedure follows:

Sub PrintablePage ()
Dim printableSlide As Slide
Dim homeButton As Shape
Dim printButton As Shape

Set printableSlide = _

ActivePresentation.Slides.Add (Index:=printableSlideNum,

Layout : =ppLayoutText)
printableSlide.Shapes (1) .TextFrame.TextRange.Text

"Results for " & userName
printableSlide.Shapes (2) .TextFrame.TextRange.Text =

"Your Answers" & Chr$(13)

For i = 1 To numQuestions
printableSlide.Shapes (2) .TextFrame.TextRange.Text = _
printableSlide.Shapes (2) .TextFrame.TextRange.Text & _
"Question " & i & ": " & answer (i) & Chrs$(13)
Next i
printableSlide.Shapes (2) .TextFrame.TextRange.Text =
printableSlide.Shapes (2) .TextFrame.TextRange.Text &

"You got " & numCorrect & " out of " & _

numCorrect + numIncorrect & "." & Chr$(13) & _

"Press the Print Results button to print your answers."
printableSlide.Shapes (2) .TextFrame.TextRange.Font.Size = 9
Set homeButton = _

ActivePresentation.Slides (printableSlideNum) .Shapes _

.AddShape (msoShapeActionButtonCustom, 0, 0, 150, 50)

homeButton.TextFrame.TextRange.Text = "Start Again"
homeButton.ActionSettings (ppMouseClick) .Action = ppActionRunMacro
homeButton.ActionSettings (ppMouseClick) .Run = "StartAgain"

Set printButton = _

ActivePresentation.Slides (printableSlideNum) .Shapes _

.AddShape (msoShapeActionButtonCustom, 200, 0, 150, 50)
printButton.TextFrame.TextRange.Text = "Print Results"
printButton.ActionSettings (ppMouseClick) .Action = ppActionRunMacro

142 More Tricks for Your Scripting Bag

printButton.ActionSettings (ppMouseClick) .Run = "PrintResults"
ActivePresentation.SlideShowWindow.View.Next
ActivePresentation.Saved = True

End Sub

Other than using the answer array, the main change to this procedure is that we
must loop through all the answers so we can display them. We cannot put a line
for each answer, as we have done in the past, because we do not know how many
questions we will have. Instead, we use a For loop to cycle through the answers
and add them to the slide:

For 1 = 1 To numQuestions
printableSlide.Shapes (2) .TextFrame.TextRange.Text =
printableSlide.Shapes(2) .TextFrame.TextRange.Text & _
"Question " & i & ": " & answer (i) & Chrs$(13)
Next i

In English, this code says: For each answer in the answer array, take all the
text we have already put in Shape2 of the slide (printableSlide.
Shapes (2) . TextFrame.TextRange.Text) and add (&) to that the question
number ("Question " & i) and the answer with a new line (answer (1) &
Chr$ (13)). After the For loop, we also add to all of that the score and the in-
structions for printing the slide.

Finally, if you are using a version of PowerPoint that does not automati-
cally change the size of the text to fit the text box, you will want to be sure to
change the size of the text so you can fit more than three or four answers on the
slide:

printableSlide.Shapes(2) .TextFrame.TextRange.Font.Size = 9

Just change the 9 to a smaller number if you have more questions.

As a scripter, your burning question should be: How do I add questions to
my presentation? If you have put all the above code in your presentation, you
must do the following things to add questions:

1. Foreach multiple-choice question, do not touch the VBA; just add the
question slide and tie the button for the right answer to
RightAnswerButton and the buttons for wrong answers to
WrongAnswerButton.

2. For each short-answer question, add a slide with the question and tie
the question button to a new procedure that is exactly like
Question3, except that it will have a different number for the name
of the procedure (Question4, Questions, etc.) and it will change
the text of the question in the InputBox statement and the correct an-
swer(s) to check for in the If statement.

3. If you have a lot of questions, change the font size of the text box in
the PrintablePage procedure to 9 or smaller.

Random Numbers 143

Random Numbers

Random numbers are a powerful tool. Often you know exactly what you
want in your presentation and in exactly what order. At other times you want to
mix things up randomly. For example, you might want to practice addition facts,
but you don’t want to specify every possible combination of one-digit numbers.
Instead you want the computer to randomly generate problems for you. In an-
other example, you might have a large pool of questions, but you only want to
ask a few that are randomly selected. This section explores these examples.

To have the computer generate random numbers, you need to know three
things: Randomize, Rnd, and Int. For you math purists, computers cannot gen-
erate truly random numbers, but they can come close enough for almost any
purpose.

To be sure they are close enough for our purposes, we need to make sure
that they are not the same every time. That is why we start with a Randomize
statement. Just put this somewhere where it will be run before you need any ran-
dom numbers (such as in your Initialize procedure). Imagine that the com-
puter has a big deck of cards with numbers on them. When you ask for a random
number, it picks the first card off the top of the deck and gives you the number on
it. When you ask for another random number, it picks the next card. This deck of
cards starts out in the same order every time, so every time you start the presenta-
tion and ask for a bunch of cards, you will get the same cards. This isn’t very
good. What we need is to shuffle the cards. Randomize shuffles the cards. We
only need to do this once when we run the presentation, because the deck of
cards is very large. That is why we do this in our Initialize procedure.

Next, we want to get a random number. This is done with the Rnd state-
ment. You could have a procedure that includes:

myRandomNumber = Rnd
MsgBox (myRandomNumber)

This will pop up a MsgBox with a random number in it. The problem is that the
number that is generated is somewhere between 0 and 1. Normally, we want ran-
dom numbers that are positive integers (you know: 1, 2, 3,4,5,6, ...). Have no
fear. That is where Int comes in. Int takes a real number and chops off every-
thing after the decimal point. For example, Int (3.1415926) returns 3, and
Int (.4567) returns 0. We can generate a random number between 0 and 9
with:

myRandomDigit = Int (10 * Rnd)

By multiplying a number between 0 and 1 by 10, we get a number from O up to
9.99999999. By taking the Int of that we get 0, 1, 2,3, 4,5, 6,7, 8, 0r 9. We can
get a random number in any range by using the following formula:

144 More Tricks for Your Scripting Bag

Int ((upper - lower + 1) * Rnd + lower)

upper is the biggest number you would want, and 1ower is the smallest number
you would want. For our O through 9 example, we would have Int ((9 - 0 +
1) * Rnd + 0) or Int (10 * Rnd) + 0) or just Int (10 * Rnd). If we
wanted numbers from 1 to 100, we would have Int ((100 - 1 + 1) * Rnd +
1) or Int (100 * Rnd + 1).If we wanted numbers from 50 to 100, we would
have Int ((100 - 50 + 1) * Rnd + 50) or Int (51 * Rnd + 50).Don’t
worry if you don’t quite understand the math; just use the simple formula, and
you will be fine.

Randomly Generated Questions

Let’s use random numbers with a simple example. In this example, we will
want to randomly generate one-digit addition problems. We will have a title card
with a button linked to GetStarted and a question card with a button linked to
RandomQuestion. The code follows:

Sub GetStarted()
Initialize
ActivePresentation.SlideShowWindow.View.Next
End Sub

Sub Initialize()
Randomize
End Sub

Sub RandomQuestion ()
Dim first As Integer
Dim second As Integer
first = Int (10 * Rnd)
second = Int (10 * Rnd)
answer = InputBox("What is " & first & " + " & second & "?")
If answer = first + second Then
DoingWell
Else
DoingPoorly
End If
End Sub

Sub DoingWell ()
MsgBox ("Good job")
End Sub

Sub DoingPoorly ()
MsgBox ("Try to do better")
End Sub

GetStartedis the same as our usual Get Started although in this example we
don’t use the student’s name so we don’t call YourName. You could add the Dim
userName, the YourName procedure, and appropriate references to userName

Random Numbers 145

in DoingWell and DoingPoorly if you want. Because we are not keeping
track of anything, Initialize just shuffles the deck by calling Randomize.

The heart of the procedure is RandomQuestion. This generates two ran-
dom numbers from O to 9 and stores them in the variables first and second. If
you want them to be something other than from 0 to 9, use the earlier formula to
figure it out. Next, it puts up an InputBox asking for the student to type the sum
of those two numbers. Then, it checks to see whether the answer was right by
comparing what was typed to £irst + second, which is the right answer. You
can change this to multiplication or subtraction by using * or —instead of +. You
can add a third variable to make this into a problem with three numbers. You
can even display the problem in a text box by using some of the tools for manipu-
lating text from Chapter 6. You might have an easier time formatting the num-
bers into columns if you use a text box or more than one text box.

Keeping Score

With some minor modifications, we can plug RandomQuestion into some
of our other quizzes from Chapter 7. We’ll start by keeping score. Start with the
code from “Keeping Score” in Chapter 7 (see Figure 7.1, page 93). Add the fol-
lowing RandomQuestion procedure (this is the same as the previous
RandomQuestion procedure, except that it calls RightAnswer and
WrongAnswer instead of DoingWell and DoingPoorly):

Sub RandomQuestion ()
Dim first As Integer
Dim second As Integer
first = Int (10 * Rnd)
second = Int (10 * Rnd)
answer = InputBox("What is " & first & " + " & second & "?")
If answer = first + second Then
RightAnswer
Else
WrongAnswer
End If
End Sub

Add Randomize to the 1Initialize procedure. Remove
ActivePresentation.SlideShowWindow.View.Next from RightAnswer
and WrongAnswer so it does not automatically advance to the next slide.

For this to work properly, you need three slides: a title slide, a question
slide, and a feedback slide. The title slide has a button tied to GetStarted. The
question slide has a button tied to RandomQuestion and a button that goes to
the next card. And the feedback slide has a button tied to Feedback.

If you are adventurous, you might try to eliminate the feedback slide and
keep a running total in a text box on the slide. After each question, update the
text in the text box. You already have the number of correct and incorrect an-
swers stored in numCorrect and numIncorrect. You simply need to use this
to update a text box after each question is answered.

146 More Tricks for Your Scripting Bag

Try Again: Answer Until It’s Right

Next, we can try to force the student to answer until the question is right,
only counting the first try. This time, start with the code from “Try Again: An-
swer Until It’s Right” in Chapter 7. Make the exact same changes as above, ex-
cept use this RandomQuestion procedure:

Sub RandomQuestion ()
Dim first As Integer
Dim second As Integer
Dim done As Boolean

done = False
first = Int (10 * Rnd)
second = Int (10 * Rnd)
While Not done
answer = InputBox("What is " & first & " + " & second & "?")
If answer = first + second Then
RightAnswer
done = True
Else
WrongAnswer
End If
Wend
End Sub

This uses a While loop similar to what is used for short-answer questions. The
random numbers are generated before the While loop so that the same question
is asked over and over again until it is answered correctly.

If you want to try to create a printable page with the results, you can try that
on your own. Start with the version of that from this chapter in “Arrays.” Keep in
mind that simply listing the answers might not be helpful because the questions
are randomly generated. You might want to add another array to keep track of
the questions so you can add the questions and answers to your slide.

Choose Questions Randomly from a Pool

My daughter is learning to read. Although I am generally opposed to com-
puter use by five-year-olds, my daughter is fascinated with the computer, and I
thought I could use it with her to help her read. I took the words she was working
with in school and the reading sentences her teachers sent home and created a
presentation. The presentation contains a few sentences and a multiple-choice
question on each slide. Throughout the year, I added to the slides, but I did not
want her to go through each slide every time. I wanted to limit her time on the
computer, so I wanted the computer to randomly select five questions for her to
answer. The presentation uses an array to keep track of which questions have
been answered (so no question is repeated in each set of five) and random num-
bers to pick which question to present next. The code for this presentation can be
found in Figure 8.2.

Choose Questions Randomly from a Pool 147

Bim upernans R SErpm]
Olm vipstsd]l R BoSSidal
Dba foE?d dess a0 OS]
LS hilPedd RS LEEESrE
Dim nem®sated Ay Inke-jas
fub Secrrarted il
Tmtinlise

Tiurianeg

Fanchub-om T

gl

Frdmssom ik
neBantes] = 4
neEPaad = 0
hoeElides = Acvimdbiesshtatlss. Bhides Codnl
Fafiim wEvived |l idas
For 4's 2T romd 1Eoes H
Ferisedill = Talse
et §
Snd Tnt
JakE TismElane)
oesraans = Ippor@on*ihar 18 eur neesi¥|
B Wt
Jub RiFsTanmwsy i}
Perimgwall]
viFItetiRoriveFraaennat ot Rl e bowl s ndon W Lew Bl e 3L Ldn inden] = Trow
mEFead = mumfend = |
Fenrriom iR gt
End Ful
Tul Wrceginywer |
[LEFE 2 d 2703 g RS
el Bok
ok SilEgjesll i)
HaghoE 1TEesd 1ok, T b ubEEnEEE & "7

Endl_Ful
fub PoingPooz iyl
Meglca ("Toy sapsing T & upscpans § *, 7
Cnd Huh
Pulb REHSCRMeT i)

Gim ST] Lk Al LOBg

I mmPasd >+ neaBaftied I =sabesd = a3 liden - 5 Than
At fyaPpedactat Lon] 1Sl fioull hdcaw. W2

Else
BEXTALISe = IuT | (GuES]1tes L * Baf ¥ g
B Eie vislted ineRralidel & TEuE

neErsilids = Inciivamilicew - XTI ¥ Emal = 2 =
B
At iveRFomiestat LR 3] S 00wl | 0o, 7 itw, EeEo0] 13w fRexEf] JdE)
he 1T

|
e
E

E

Figure 8.2. VBA Code for Selecting Five Questions from a Pool of Questions

This presentation consists of a title slide, a last slide, and as many question
slides as we want. The title slide has a button that is tied to the Get Started pro-
cedure. The question slides have buttons for right and wrong answers that are
tied to the RightAnswer and WrongAnswer procedures, respectively. The last
slide has a button that is hyperlinked to the first slide (no VBA) and plays the ap-
plause sound. This version does not keep score.

148 More Tricks for Your Scripting Bag

The key elements of this presentation are the array visited and the proce-
dure RandomNext. visited has an element for each question. Actually, it has
an element for each slide, but the first and last elements are ignored. The ele-
ments are each setto False in Initialize. When a question is answered cor-
rectly, the element of visited for that question is set to True in the
RightAnswer procedure. In addition, one is added to numRead, a variable that
keeps track of how many questions have been read.

RandomNext is used to go to the next question instead of
ActivePresentation.SlideShowWindow.View.Next. In the past, the
next question has always been the next slide. Now, we want to randomly select a
slide, so we can’t simply go to the next slide. RandomNext first checks to see
whether we have answered five or more questions. Just in case the presentation
doesn’t have five questions, it also checks to be sure we haven’t answered as
many questions as there are:

If numRead >= numWanted Or numRead >= numSlides - 2 Then

numWanted was set in Initialize to be 5; that is, we want to ask five ques-
tions at a time. You can change that number in Initialize if you want to ask
more or fewer than five questions at a time, or you can ask the user how many
questions to do (see below).

If we have asked enough questions, RandomNext jumps to the last slide.
Otherwise, it randomly picks a new slide to jump to. Randomly picking another
slide is very easy using Rnd, but we want to make sure we are jumping to a slide
that we haven’t seen yet. First we randomly pick a slide:

nextSlide = Int((numSlides - 2) * Rnd + 2)

This assigns the randomly chosen slide to nextS1lide. The while loop keeps
looping as long as we have seen the chosen slide (visited (nextSlide) =
True). That is, if we pick slide 7 as our next slide, visited (7) will be True if
we have seen slide 7, so we will keep looping, and pick another slide with
nextSlide = Int ((numSlides - 2) * Rnd + 2).Once we have picked the
next slide, we can go there with:

ActivePresentation.SlideShowWindow.View.GotoSlide (nextSlide)

That is all you need to choose a few questions from a pool of questions. To add
more questions, you don’t have to change any VBA at all; just add more question
slides between the first and last slide. If you want to ask a different number of
questions, you can either change numWanted = 5 to another number in the
Initialize procedure, or you can try out the code in the next section.

This is a good place to remind you that you can and should use all the tradi-
tional PowerPoint tools at your disposal. For many of the questions I have made

Choose Questions Randomly from a Pool 149

for my daughter, I include pictures from clip art for the answers instead of regu-
lar buttons. I also use sounds liberally. The most important use of sound (aside
from the applause at the end) is sound for difficult words or sentences. If I in-
clude a word or sentence that might be beyond my daughter’s skills, I add a re-
corded sound of me reading the word or sentence. She knows that she can click
on any speaker icon to have something read to her. While I am not a big fan of
bells and whistles, you should use as many traditional features of PowerPoint as
you think are appropriate.

Ask How Many Questions You Want

In the above example, a simple line of VBA was used to determine the
number of questions to be asked at a time. Perhaps you want the user to pick. To
do this, simply replace numWanted = 5 with HowMany inthe Initialize pro-
cedure, and add the following HowMany procedure:

Sub HowMany ()
done = False
While Not done
numWanted = InputBox ("How many questions would you like?")
If numWanted >= 1 And numWanted <= 10 Then
done = True
Else
MsgBox ("Pick a number from 1 to 10")
done = False
End If
Wend
End Sub

The heart of this procedure is the InputBox statement. That is really all that is
needed. However, my daughter might be inclined to type a very large number
and get a lot of questions (so she can put off going to bed). The while simply
checks to make sure the number chosen is between 1 and 10 inclusive. If you
don’t care what number is chosen, leave out the Wwhile loop. If you want to al-
low a different range of numbers, change the numbers in the While statement.

Keeping Score

For my daughter at the age of five, I don’t keep score, but you might want to
report a score at the end. Adding scorekeeping is not hard. We will need
numCorrect and numIncorrect to be declared (Dim numCorrect and Dim
numIncorrect) at the beginning of the module and initialized in the Ini-
tialize procedure (numCorrect = 0 and numIncorrect = 0),just like in
any example that keeps score. Because we are asked to repeat a question until it
is correct, we need gAnswered to be declared Dim gAnswered at the beginning
of the module and initialized in the Initialize procedure (gAnswered =
False). Finally, RightAnswer and WrongAnswer need to adjust the score if
the question has been answered:

150 More Tricks for Your Scripting Bag

Sub RightAnswer ()
If gAnswered = False Then
numCorrect = numCorrect + 1
End If
gAnswered = False
DoingWell
visited (ActivePresentation.SlideShowWindow.View.Slide.SlideIndex) _
= True
numRead = numRead + 1
RandomNext
End Sub

Sub WrongAnswer ()
If gAnswered = False Then
numIncorrect = numIncorrect + 1
End If
gAnswered = True
DoingPoorly
End Sub

These are all the same changes that we made when we wanted to keep score in
Chapter 7. You should be able to add short-answer questions by using the same
Question procedures for each question that you used in Chapter 7.

You now have a powerful tool for randomly selecting slides. Note that
these examples used quizzes, but if you understand this code, you can do some-
thing very similar to create a random story that picks random slides to go to next.
The heart of this is RandomNext as well as the line:

visited (ActivePresentation.SlideShowWindow.View.Slide.SlideIndex) = True

Together, these will pick a random slide to go to next and mark that you have
gone to that slide.

Conclusion

In this chapter you have developed a better understanding of a few VBA
tricks we had already used, such as looping and If statements, and you learned
several new tricks, including timed functions, arrays, and random numbers.
These tricks are beginning to get more complicated than the earlier chapters, so
if you don’t understand how they work, you can simply type in the VBA code
from the examples. If you do understand how they work, you can think of new
things that you can do with these tricks—or at least modify the examples to suit
your Own purposes.

Now that you might be writing some of your own code, or at least typing in
long examples, you have a lot of opportunity to make mistakes. Mistakes are
common in scripting and programming, and they are called bugs. Fixing mis-
takes is called debugging. In the next chapter, you will learn some tricks to help
you debug your code, that is, fix your mistakes.

Exercises to Try 151

Exercises to Try

U Create a template of a multiple-choice quiz using the code from
this chapter. Teach three of your friends, colleagues, or students
to create their own multiple-choice quizzes using your template.
Remember that they don’t have to change any of the VBA to do
this.

U Create a template of a quiz with short-answer questions using
the code from this chapter. Teach three of your friends, col-
leagues, or students to create their own quizzes with short-an-
swer questions using your template. Remember that they will
have to edit the VBA, so you will have to teach them how to get
to the VBA Editor, but they will only have to copy and paste
your Question code and change the question number, the text
of the question, and the answer to the question in VBA.

49

Debugging Tips

Introduction

In Chapter 8 you added to your bag of tricks. Whether you are ready to ven-
ture out on your own, writing scripts that are more than minor modifications of
the examples in this book, or are simply copying more and more complex exam-
ples, you are bound to make mistakes. This chapter describes several ways to
track down your mistakes and avoid making mistakes in the first place, and
points you to some common mistakes for which you can look when your code
seems like it should work, but it doesn’t.

Vocabulary
* Bug * Debug
* Capitalization * Indenting
* Compile error * Run time error

e Commenting out

My Scripts Always Work the First Time

If you have tried more than one or two examples in this book, you are al-
most certain to have made at least one mistake. In computer terms, mistakes are
called bugs. This term comes from the time when computers were as big as en-
tire rooms and real bugs were a problem:

154 Debugging Tips

American engineers have been calling small flaws in ma-
chines “bugs” for over a century. Thomas Edison talked about
bugs in electrical circuits in the 1870s. When the first comput-
ers were built during the early 1940s, people working on them
found bugs in both the hardware of the machines and in the
programs that ran them.

In 1947, engineers working on the Mark II computer at Har-
vard University found a moth stuck in one of the components.
They taped the insect in their logbook and labeled it “first ac-
tual case of bug being found.” The words “bug” and “debug”
soon became a standard part of the language of computer pro-
grammers. (Smithsonian National Museum of American His-
tory, n.d.)

The process of fixing bugs is called debugging. If you follow the examples
in this book exactly, debugging is not difficult; you simply compare what you
typed to the example and find the difference. Once you get a little more adven-
turous and try to make a few small changes to the scripts, you will need some
ideas to help you solve problems.

Testing for Bugs

There are two main types of bugs: (1) those that cause your script not to
work, and (2) those that cause your script to work but not work properly. The
first type is easy to detect because you will either get an error message or nothing
will happen (see below). The second type is much harder to detect because ev-
erything will appear to work fine, but the results you get will not be right (e.g.,
the computer tells you how many questions were answered correctly, but the
number it gives is not the right number). Both kinds of bugs require you to test
your project to make sure it is working properly.

When you write a procedure, you should try to tie it to a button as soon as
possible. Then go to Slide Show View and click on the button. If you get an error
message or, more likely, nothing happens, you know you have a problem. This is
probably the first type of error, and you can go back to your script to find out
what is wrong.

If something happens, but it is the wrong thing, you know you have a prob-
lem. This is the second type of error. Unfortunately, the second type of error is
usually harder to spot and requires much more extensive testing as well as pay-
ing close attention to what happens. For something as simple as the DoingWell
procedure, it might be easy to see that you have a problem, but this procedure re-
lies on the YourName procedure to give it the correct answer. If DoingWell
brings up a MsgBox with “You are doing well,” and no name, there is a problem,
but where is it? Before you even track down where the problem is, you must

The Error in Red 155

notice that a problem exists. If you are not paying close attention, you will see a
MsgBox pop up, but you will not notice that anything is wrong.

As our procedures become more and more complicated and more and more
interdependent, spotting a problem can be very difficult. If a procedure isn’t tied to a
button but called from another procedure, you can’t simply tie the procedure to a
button and expect it to work. A procedure that depends on other things happening
first is hard to test. If you tie DoingWell to a button and click on the button, you
might not get the results you expect, but it might be because something is wrong, or
it might be because you haven’t clicked on a button that is tied to YourName yet.
This could be because some of your procedures are written incorrectly, you are test-
ing out an isolated procedure before putting the whole presentation together, or you
didn’t force the student to type a name before moving through the presentation.

This is an example of why thoroughly testing your procedures is very im-
portant. If you create a presentation, you know what you are supposed to do. If
you always do what you are supposed to do and everything works, you know the
project works when your students always do what they are supposed to do. Do
your students always do what they are supposed to do? Of course not. They will
get answers wrong. They will click on one button when you gave them direc-
tions to click on another button first. They will use arrow keys and the space bar
to move to the next slide if you forgot to put your presentation in Kiosk mode.
They will click the same button fifty times in a row, just to hear the sound that
the wrong-answer buttons make. In short, they will not do everything right, and
when you are testing your program, you should not either.

No News Is Bad News

VBA is not very talkative when it comes to bugs. Once it encounters a bug
in a procedure, it just stops. You could have a procedure that is 100 lines long,
but if there is bug on the first line, the last 99 won’t execute. And VBA will be si-
lent. If you’re like me, you click on the button again (and again and again and
again), muttering to yourself that this has to work. On the one hand, it would be
nice if VBA told you something was wrong, a polite MsgBox saying, “I’m sorry,
but you have a problem in your procedure. I cannot continue.” On the other
hand, computer error messages are notorious for being incomprehensible. So,
would you rather get nothing or “36549 invalid register access”?

Just treat nothing as your private error message. If you expect something
and nothing happens, you know something is wrong, and it is time to start look-
ing for bugs.

The Error in Red

Sometimes the VBA Editor will catch an error and highlight it in red. As
you type your code and hit the Enter key (Return key on a Macintosh) after you
type a line, certain types of errors will turn red. You can also get those same

156 Debugging Tips

errors to turn red by clicking on any other line in your module. Keep in mind that
lines that end with an underscore are continued on the next line, so you have to
hit Enter after the whole line is finished, or you have to click on a different line to
get the error to turn red.

One common mistake is to type a line and immediately switch back to
PowerPoint to test out your procedure. If you do this without hitting Enter or
clicking on another line, you will miss the red, and your procedure will not work.
The line still will be red when you get back to the VBA Editor, but you will have
wasted the time going back to PowerPoint, running your procedure, and scratch-
ing your head for a few seconds while trying to figure out what went wrong.

Usually, with errors that turn red, you will also get a message right away
that tells you something about the error. For example, Figure 9.1 shows a typical
error.

Misirosell Yiswal Hasic E

_33 Compie Brron
Eg:kna&mw?p

o] |

Figure 9.1. Typical Compile Error

This is a compile error. A compile error happens when the computer can’t even
figure out what to try to do. In this case, it is probably looking for a close paren-
thesis. It even suggests that that might be the case. A line like the following will
generate the error in Figure 9.1:

MsgBox ("hello"

Sometimes these messages are helpful, and sometimes they are not. Al-
though the message in Figure 9.1 indicates that we are missing a comma or a
close parenthesis, sometimes a message like that is the result of some completely
different problem.

Try typing the following procedure to add a 16-point star to your current
slide:

Sub AddStar ()
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape
(msoShapelépointStar
End Sub

The Error in Red 157

If you hit Enter (or click anywhere else in your module) after typing
msoShapelépointStar, you will get the error in Figure 9.1, and the line with
the error will turn red. In this case, we are missing the close parenthesis, so we
can add it:

Sub AddStar ()
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape _
(msoShapelépointStar)
End Sub

Now when you hit Enter, the line doesn’t turn red. Does that mean that it works?
No, it does not. But we’re ready to try it out to see if it works.

Create a button and tie it to the procedure AddStar. Go to Slide Show
View and click on your button. No news is bad news. The VBA Editor (or more
accurately, the VBA compiler) couldn’t find anything wrong as you typed, but
when VBA tried to run the procedure, it couldn’t figure it out, so it just gave up.

Unfortunately, we don’t have any more clues as to what is wrong. How-
ever, since we are adding a shape, we might remember that we need to tell VBA
where the shape should go and how big it should be:

Sub AddStar ()
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape
(msoShapelépointStar, 100, 100, 100, 100)
End Sub

We have told VBA that we want our shape to be 100 pixels from the left of
the screen, 100 pixels from the top of the screen, 100 pixels wide, and 100 pixels
tall. This should fully define our shape. Hit Enter and now VBA starts to com-
plain again with the error in Figure 9.2.

Wicrosaft Wicusl Basic E:

—'& Conipds arror,

Epecied =

| Ok Heslps

Figure 9.2. Typical Compile Error

Now, VBA thinks we are missing an equals sign. This is a good example of
a cryptic message that can be a bit deceiving. In fact, we are missing an equals
sign, but simply adding an equals sign (like we added a parenthesis earlier)
won’t do the trick. The problem here (as is often the problem when VBA com-
plains about a missing equals sign) is that we have created an object, and when
VBA creates an object, it wants to put that object in a variable (whether or not we

158 Debugging Tips

ever want to do anything with that object again). Thus, we need to set a variable
to point to the new object (using Set because it is an object):

Sub AddStar ()
Set myShape =

ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape
(msoShapelépointStar, 100, 100, 100, 100)
End Sub

Now, we are in good shape! If you hit Enter, nothing will turn red, but we
won’t know if it works until we try it. Go back to PowerPoint, go to Slide Show
View, and click on your button. If all goes well, you will now have a new shape
on your slide.

Of course, if you click on the button a second time, nothing will happen. Or,
it will appear that nothing happens. That is because you will create another shape
on top of the first shape. If you go back into Edit View in PowerPoint, you can
see that you have two shapes by dragging one of the shapes out of the way.

I’m Not Seeing Red, But I’m Seeing Red

The above example was fairly simple. It was one line, so we knew where
the problem was; it had to be in that line. Many of your procedures will be more
complicated. If you have a procedure with two or three or ten or twenty lines,
you won’t know where the problem is. One small error in the middle of a proce-
dure might cause your button to do nothing. You should be able to catch the er-
rors that the VBA Editor turns red because they will be red, but the ones that
don’t turn red are harder to find.

Now we need some way to figure out which line is the problem for those er-
rors that don’t turn red. While VBA has some tools to help you with debugging,
these tools are not always the best choice. That is because of the distinction be-
tween Slide Show View and Edit View. When you are in the VBA Editor,
PowerPoint is generally sitting in Edit View. Remember that most of our proce-
dures are made to work in Slide Show View (anything that starts with
ActivePresentation.SlideShowWindow is only going to work in Slide
Show View).

To solve this problem, you can use MsgBox. MsgBox is a simple (read that
as “hard to mess up”’) command that pops up a message. Add a few MsgBox
commands to your code with informative messages that tell you what you are ex-
pecting and where you are in the code. For example, you might put a MsgBox at
the beginning of the procedure:

MsgBox ("Entering the procedure AddStar.")

When you run the procedure, if you don’t even get a message that pops up
to say, “Entering the procedure AddStar,” you know the problem probably is not
in the procedure (unless it is in the Dim statements in the procedure because the

I’'m Not Seeing Red, But I'm Seeing Red 159

first MsgBox has to come after the procedure’s Dim statements). It could be that
you linked your button to the wrong procedure or, in a more complicated script,
it could be that the problem is in another procedure that calls this one. If you get
the message, you know you have gotten into the procedure. Now, you can add
some more MsgBox commands to try to locate the problem. For example:

Sub AddStar ()
Dim myShape As Shape

MsgBox ("Entering the procedure AddStar.")

Set myShape =
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape
(msoShapelépointStar, 100, 100, 100, 100)

MsgBox ("I just added the shape, and I'm about to add some text.")

myShape.TextFrame.TextRange.Text = "Good job!"

MsgBox ("I just added some text, and I'm about to change the color.")

mShape.Fill.ForeColor.RGB = vbBlue

MsgBox ("Color is changed; now I’1ll change the size.")

myShape .Height = 200

myShape.Width = 200

MsgBox ("I am about to leave AddStar.")

End Sub

Try running the above procedure. See if you can find the error. As you run
the procedure, you should get the messages:

 Entering the procedure AddStar.
e I just added the shape, and I’'m about to add some text.
e I just added some text, and I’'m about to change the color.

But that will be it. You will know that the problem is probably in the fol-
lowing line. If you look closely, you will see that the line has a small typo; it uses
mShape instead of myShape. Once the problem is fixed, try it out again. If it
works, you can delete all the MsgBox lines.

You can also use a MsgBox to tell you what is in a variable. For example,
if something is wrong with the scoring in a quiz, you might want to use the fol-
lowing line at various places to get updates about what the computer thinks the
score is:

MsgBox ("The value of numCorrect is " & numCorrect)

This will work most of the time. Unfortunately, certain kinds of errors will
not turn red and will not allow the procedure to run at all (for example, instead of
misspelling myShape, try misspelling RGB). These are harder to find and are a
good reason to use some tricks to prevent errors in the first place (see “An Ounce
of Prevention”).

160 Debugging Tips

Commenting Out

Because the MsgBox method, in the previous section, works sometimes and
doesn’t work other times, you might need another old programmer’s trick to
find your error: commenting out. Remember that everything on a VBA line after
a single quote is ignored; that is, it is a comment. You can put a single quote at
the beginning of a line and that entire line will be ignored. This is better than de-
leting the line because you still have the code there, and you can get it to run
again by deleting the single quote. Note that the VBA Editor turns comments
green, so if you have anything that is green in your code, it is ignored by VBA.

Sub AddStar ()
Dim myShape As Shape

MsgBox ("Entering the procedure AddStar.")

Set myShape = _
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape _
(msolépointStar, 100, 100, 100, 100)

MsgBox ("I just added the shape, and I’'m about to add some text.")

myShape .TextFrame.TextRange.Text = "Good job!"

MsgBox ("I just added some text, and I'm about to change the color.")

myShape.Fill.ForeColor.RGB = vbBlue

MsgBox ("Color is changed; now I’1ll change the size.")

myShape.Height = 200

myShape.Width = 200

MsgBox ("I am about to leave AddStar.")

End Sub

The above procedure is similar to the one earlier, except there is a different
error. If you try running the procedure with this error, nothing will happen. You
won’t even get “Entering the procedure AddStar.” That means that it is time to
comment out some lines to try to track down the problem. Since nothing can
work until the shape is created, you probably want to start with the line after Set
myShape

Sub AddStar ()
Dim myShape As Shape

MsgBox ("Entering the procedure AddStar")

Set myShape = _
ActivePresentation.SlideShowWindow.View.Slide.Shapes.AddShape _
(msolépointStar, 100, 100, 100, 100)

'MsgBox ("I just added the shape, and I'm about to add some text.")

'myShape.TextFrame.TextRange.Text = "Good job!"

'MsgBox ("I just added some text, and I'm about to change the color."

'myShape.Fill.ForeColor.RGB = vbBlue

'MsgBox ("Color is changed; now I’1ll change the size.")

'myShape.Height = 200

'myShape.Width = 200

'MsgBox ("I am about to leave AddStar.")

End Sub

Compiling Your Code 161

You’ll notice that all the lines after the Set myShape (except End Sub) line are
green in the VBA Editor. These lines will not run. As far as VBA is concerned,
they are not even there.

Try running the procedure with all the comments. If it works, start remov-
ing the comments (just the single quotes, not the whole lines) from the line be-
low Set myShape. Run it again. If it works, remove the comment from the next
line and run it again. Keep removing one comment and running it again until it
stops working. When it stops working, you have found the problem line. It must
be the last line from which you removed the comment. If you have removed all
the comments and it still doesn’t work, then the problem is probably the Dim
statement or the Set myShape line.

If you go through this exercise, you’ll find that the problem is with the Set
myShape line. msolé6PointStar should be msoShapel6PointStar. Often
the parameters of procedures are the kinds of errors that will cause a procedure to
not work at all, rather than work until it reaches an error. But the best way to
eliminate errors is to practice some prevention techniques. They won’t prevent
all errors, but they will cut down on errors.

Compiling Your Code

Sometimes your code will not work, and you won’t know why. You might
have tried all the techniques above, but you still can’t find the bug. There is one
more technique that sometimes gives more information: compiling your code.

Certain kinds of errors are run time errors. These happen when your code is
running. The computer doesn’t know that there is a bug until it tries to run the
code. Other kinds of errors are compile errors. These are errors in which the
computer can see a problem before you run the code. Errors that turn red are one
type of compile error, generally errors that affect one specific line of code. Other
errors do not turn red, but they make all the code stop working.

You can find compile errors by choosing “Compile VBAProject” from the
Debug menu in the VBA Editor. This will look over your code for any errors that
the computer can catch before your code is run.

If you get a message that includes “Compile error,” you will probably get
some useful information about what is wrong. It will probably highlight where
the problem is in your code and describe the problem. For example, the error
“Argument not optional” tells you that you are missing an argument for a proce-
dure or method. And you will know which procedure or method is missing the
argument because it will be highlighted. If you have more than one compile er-
ror, then you will have to do this again because the compiler stops on the first er-
ror it finds. Fix the first error and compile your project again to see if there are
any more errors.

162 Debugging Tips

Debugger

The VBA Editor comes with a debugger. In some cases, this will be useful,
but it will not work well for most of our code. The debugger lets you set break-
points to stop your code at certain points as it runs. Unfortunately, this does not
work well for code that runs in Slide Show View, so it is not useful for most of
Our purposes.

An Ounce of Prevention

As you write your code, you can use several techniques to help you catch
bugs as you type. These techniques will not prevent all bugs, but they will cut
down on the number you have to find later. If you are perfect and never make
mistakes, these techniques won’t affect anything. The techniques are for human
eyes; the computer will be able to run your code without them. But for those of
us who are not perfect, our human eyes need all the help we can get to catch bugs
or prevent them from happening.

Capitalization

You might have looked at some of the examples and wondered why certain
things were capitalized in certain ways. Some of it is part of the technique to pre-
vent bugs, and some of it is forced upon you by VBA. There are five kinds of
things you can type into the VBA Editor:

1. Comments

2. Text between quotes
3. Variable names

4. Procedure names
5

VBA stuff (built-in function names, procedure names, object names,
etc.)

Comments can be capitalized any way that you like because they are for
you to read. Pay close attention to capitalization of text between quotes because
that will usually be displayed for your students, but for the purposes of debug-
ging, it doesn’t matter how you capitalize it. Capitalization of the last three items
can be important for debugging.

In this book, I have used the following convention: Variable names begin
with a lowercase letter; and procedure names begin with an uppercase letter.
Furthermore, since variable names and procedure names cannot contain spaces,
any new word in the name begins with an uppercase letter. This is a convention,
a technique, a trick. I could have used yourName instead of YourName and
UserName instead of userName. It would have worked fine. However, if you
use this convention, you can look at your code and always tell whether a name

An Ounce of Prevention 163

refers to a variable or a procedure by looking at the capitalization. Capitalizing
the first letter of each subsequent word in a variable or procedure name simply
helps you read it more easily. You want to be able to read the names because you
picked names that make sense to you.

You should be able to tell immediately that the following are variables, and
you probably even have a reasonable idea of what information they hold:
myShape, numCorrect, userName, printableSlide. You should be able to
tell immediately that the following are procedures: YourName, RightAnswer,
AddStar.

For the VBA stuff, you don’t have a choice about capitalization. Most VBA
stuff will be capitalized for you, no matter how you type it. This is a good thing
that can help prevent bugs.

Don’t Capitalize to Prevent Bugs

While you are writing your scripts, the VBA Editor tries to be helpful. You
might find this annoying at times, but many of its helpful features can prevent fu-
ture problems.

The VBA Editor will automatically adjust your capitalization for you. This
might seem excessively meticulous, but you can use it to catch typing mistakes.
You’ll notice that built-in procedures and commands (such as MsgBox and Dim)
all start with capitals. The only times you should capitalize words yourself are in
Dim statements (declaring variables), Sub statements (at the beginning of
procedures), and inside quotes.

If you follow the capitalization convention, after you have declared a vari-
able with a Dim statement, always type it in lowercase. And after you write a pro-
cedure and capitalize it properly in the Sub statement, if you call the procedure
from another procedure, you can type its name in lowercase. Not only is it easier
to type in lowercase, it will help you catch mistakes.

After you type a line and hit Enter (or click somewhere else in your script),
the VBA Editor will automatically adjust the capitalization. For example, type
the following:

activepresentation.slideshowwindow.view.next

When you hit Enter, the VBA Editor will change it to:

ActivePresentation.SlideShowWindow.View.Next

The power of this is apparent when you type something wrong. If you left
outa “t’ in ActivePresentation, for example, that would not be capitalized.
For example, type the following:

activepresenation.slideshowwindow.view.next

164 Debugging Tips

When you hit Enter, it changes to:

activepresenation.SlideShowWindow.View.Next

The fact that act ivepresenation did not change in capitalization is a tip-off
that something is wrong.

This also works for any variables that you have declared and procedures
you have written. The VBA Editor gets the capitalization that you want to use
from the Dim statement and the Sub statement (that’s why you have to type with
proper capitalization in the Dim and Sub statements) and automatically adjusts
the capitalization as you type the variable or procedure name in the future. If the
capitalization is not automatically adjusted for you, you have either misspelled
the name of the variable or procedure or have forgotten to declare the variable.

Misspelling the name of a variable or procedure gives the same results as
misspelling a keyword: The capitalization will not be changed by the VBA Edi-
tor. For example, type the following:

Dim userName As String
Sub YourName ()

usernam = InputBox (prompt:="Type your name")
End Sub

Because userName is misspelled as usernam, the n did not get capitalized.

Indenting

You might have noticed that throughout the text, code examples were in-
dented in a very specific way. Indenting helps you read the code. The computer
will understand your code just fine without indenting, but you are more likely to
make mistakes without it. “Conditionals” in Chapter 8 discussed indenting briefly
because indenting is very helpful for reading If statements. It is also helpful for
reading loops. The more complex the code, the more helpful indenting is.

You can use your own style for indenting, but whatever you decide, you
should stick with it. The easiest way to indent in the VBA Editor is to use the Tab
key. When you hit Tab at the beginning of a line, the line will be indented once.
When you hit Enter to go to the next line, the next line will be indented at the
same level. If you don’t want it indented, simply hit the Backspace key (Delete
on a Macintosh) or hold down the Shift key and hit Tab (shift-Tab). If you have a
block of lines that you want to indent, you can highlight them and hit Tab (or
shift-Tab if you want to un-indent them).

In this book, I have indented three kinds of statements:

1. Everything between a Sub and an End Sub is indented one level.

2. Everything that is part of a block is indented. This includes parts of an
If block (such as everything between an If and E1seIf or everything

An Ounce of Prevention 165

between an ElseIf and the next ElseIf or everything between an
Else and an End If). This also includes loops (such as everything
between a For and Next or everything between a while and Wend).

3. Lines that are continued from the previous line (where the previous
line ends with an underscore) are indented.

Indenting helps you see that something is a part of something else: A group of
lines is part of the Sub, a group of lines is part of the E1seIf portion of an If block,
a continued line is a part of the previous line, etc. Look at the following example:

Sub NestedIf ()

If gradeNum > 90 Then

MsgBox ("Great job. You got an A.")

If gradeNum = 100 Then

MsgBox ("You are perfect.")

End If

ElseIf gradeNum > 80 Then

MsgBox ("Good work. B is a very good grade.")
ElseIf gradeNum > 70 Then

MsgBox ("Not bad. C is still passing.")

If gradeNum < 72 Then

MsgBox ("That was close. You were lucky to get a C.")
End If

Else

MsgBox ("You can do better than this.")

End If

If gradNum > 70 Then

MsgBox ("You have passed this class.")

End If

End Sub

You might be able to understand this code, but without indenting, it is hard to tell
which End If goes with which If and under what circumstances each line will
get executed. This is much easier to understand when everything is indented:

Sub NestedIf ()
If gradeNum > 90 Then
MsgBox ("Great job. You got an A.")
If gradeNum = 100 Then
MsgBox ("You are perfect.")
End If
ElseIf gradeNum > 80 Then
MsgBox ("Good work. B is a very good grade.")
ElseIf gradeNum > 70 Then
MsgBox ("Not bad. C is still passing.")
If gradeNum < 72 Then
MsgBox ("That was close. You were lucky to get a C.")
End If
Else
MsgBox ("You can do better than this.")
End If
If gradNum > 70 Then
MsgBox ("You have passed this class.")
End If
End Sub

166 Debugging Tips

Each part that is indented is now clearly part of the line before it. It is easiest
to indent and un-indent as you go because as you type your code, you know what
you mean.

Hints from the VBA Editor

On a Windows computer, the VBA Editor often tries to give you helpful
suggestions. You might have noticed that when you type a dot, sometimes a box
pops up with possibilities for what to type next. See Figure 9.3 for an example.

Jub EoTobaxt)
Accivopoesgentation.

Bt Hul R I] -
& ST iebase
B AT el
e R L]
& Aoph Termiats
i HuinDocurmertSronertes
& e e -

Figure 9.3. Auto-Complete Suggestions from the VBA Editor

In this case the scrollable window gives you a list of all the things you can
type after ActivePresentation. You can choose from the list by dou-
ble-clicking on any item, or you can start typing. As you type, the window high-
lights the first thing in the list (in alphabetical order) that matches what you type.
If nothing is highlighted, you have typed something wrong. Generally, that list is
all that is available to type. If the list of choices has gone away, you can delete
the line back to the dot; when you type the dot again, the list will come back.

In addition, in Windows the VBA Editor will make some suggestions for
parameters for procedures. For example, if you type

activepresentation.slideshowwindow.view.gotoslide (

the VBA editor will give you some hints about what you can type next, specifi-
cally what parameters the GotoS1ide method wants (see Figure 9.4).

AT

Figure 9.4. VBA Editor Suggests Parameters for the GotoS1ide Method

The little box has a lot of details that will help you. First, you can see that there
are two possible parameters separated by commas: Index and ResetSlide.
Although the box does not tell you what the parameters are for, it does tell you

Hints from the VBA Editor 167

what kind of information they need. In this case, Index is a Long variable
(that’s a kind of integer). You can probably figure out that it is the slide number
of the slide to go to. ResetSlide is an MsoTriState variable (which is usu-
ally just a True or False value).

You should also notice that Index is not in square brackets, but
ResetSlide is. This tells us that Index is required and ResetSlide is not.
That is, you have to tell GotoSlide which slide to go to, but you don’t have to
tell it whether or not to reset (the Reset S1ide tells it whether or not to reset the
animation effects on the slide; i.e., leave them in their final state or put them back
at the beginning state). Also, notice that ResetS1ide has a default value. That
is, if you don’t include a value for ResetSlide, it will assume you wanted
msoTrue (which is basically the same as True), which means that the slide will
be reset. Finally, you will notice that Index is in bold. That means that the next
thing I type will be the value used for Index. If I type a number and then a
comma, ResetS1lide will become bold, meaning that the next value I type will
be the value for ResetSlide. If you type parameters in order, you can just type
the values as in the following:

ActivePresentation.SlideShowWindow.View.GotoSlide (5, True)

If you don’t type them in order, you can use the parameter name, followed by co-
lon equals sign (: =), followed by the value, as in the following:

ActivePresentation.SlideShowWindow.View.GotoSlide (ResetSlide:=True, _
Index:=5)

This is very helpful for a couple of reasons. First, you don’t always have to
look up which parameters are needed. For example, when adding a shape, I can
never remember which comes first and second: Top and Left or Width and
Height. I don’t need to remember because VBA will tell me, as in Figure 9.5.

] a2
Fri] Su® Eteeitingi] Topd A WHaduteihapaType, Lo 45 Sopge, Tap 44 Sogee, valls 23 Sege, Hegn 88 |

_Suiigier Bk ik

Figure 9.5. VBA Editor Suggests Parameters for the AddShape Method

Second, you always know what the procedure expects. If you leave off any re-
quired parameters (such as forgetting to specify Wwidth and Height), it won’t
work.

168 Debugging Tips

VBA Help

While Windows versions of the VBA Editor are better at suggesting things
as you type, Macintosh versions have help that is a bit easier to use. In either ver-
sion of VBA, you can choose one of the selections from the Help menu to search
for a keyword. In the Macintosh version, you can highlight a keyword, object, or
method in your code and hit the Help key on your keyboard. This will bring up
help that is directly related to what you are trying to do.

When you are using help, you can get all the information that pops up on
your screen when you type open parenthesis and VBA suggests parameters. You
should also check out the examples to help you understand what you are doing
better.

Common Bugs

Everyone makes mistakes, and everyone makes their own mistakes. How-
ever, a few mistakes are fairly common. If you can’t track down a bug, you
might look for some of these things. The bugs listed below are particularly tricky
to find because they are not a problem with a specific procedure. If one proce-
dure is not working at all or is giving the wrong results, you can usually find the
bug if you stare at that procedure long enough (or use some of the above tech-
niques to track it down). However, the following bugs cause problems for proce-
dures that are completely correct and might have been working a minute earlier.
No matter how long you stare at a procedure, you won’t find the bug if it is
caused by something outside the procedure.

Multiple Modules

You were warned early in this book that you should have only one module
for each presentation. If you have gotten this far in the book, you have probably
heeded that warning. However, some people get confused and add a second
module. Some things will work with more than one module, and some things
won’t. Check the Project window to be sure that you have only one module. If
you can’t remember how to check the modules in your Project window, look
back at Chapter 4 in “Help! I’ve Lost My Windows.”

Usually, when you add one module, it will be named “Modulel.” However,
if you played around with modules or accidentally deleted a module, your mod-
ule might be “Module2” or “Module3.” That is OK as long as there is only one
module, whatever it is named. If you have put code in more than one module, use
cut and paste to move all the code into one module. If you had Dim statements at
the top of each module, be sure you put them all together at the top of your one
module and remove any duplicates.

Common Bugs 169

Duplicate Variables

When we declare our variables at the beginning of a module, we create a
box to put information in, and we give that box a name. What if two boxes have
the same name? That would be a problem, and VBA would not know what to do.
In fact, nothing in your module would work at all. You could have buttons tied to
procedures that have nothing to do with the variable that is declared twice, but
they would not work. Nothing would work.

You might have this problem if you are combining two examples or have a
long list of variables that you declare at the beginning of your module, and you
forgot you already declared a variable. If none of your VBA works, check the
variable declarations at the beginning of the module and delete any duplicate
Dim statements.

Duplicate Procedures

Just like VBA doesn’t know what to do when you have two variables with
the same name, it doesn’t know what to do when you have two procedures with
the same name. You might have been playing around with the examples in this
book and accidentally wrote two YourName procedures. They might be exactly
the same or different, but if they have the same name, nothing will work. Figure
out which procedure does what you want and delete the duplicate. Or, if the two
procedures are really supposed to be doing different things, give one of them a
different name. You might also want to add a comment to explain what each
procedure does.

' Note that variables and procedures are not allowed to have
@ | the same name. If you give a procedure the same name as a
variable, it will not work.

Extra End Sub

The VBA Editor is nice. It never requires you to type End Sub. When you
hit the Enter key after typing a Sub line, the editor automatically types the End
Sub. Most of the time, this is a good thing. Occasionally, it is not, such as when it
leads to your code having too many End Sub lines. Since you don’t type the End
Sub lines, it is easy for extra ones to be added to your code.

If your code stops working, check for extra End Sub lines. They might be
at the end of the module or at the end of a procedure. Usually they’re in a place
that is not showing on your screen, so you’ll have to scroll to see them. Delete
the extra End Sub, and your code might work again.

170 Debugging Tips

The Forgotten Dim

In some cases you don’t need to declare variables, but if you want a variable
to remember something later, you must declare it at the beginning of the module.
It is easy to forget to do this. If, for example, you forget to declare userName,
then YourName will work perfectly fine asking for a name and storing it in
userName, but once YourName is finished, userName is forgotten.

If you have forgotten to declare a variable, like userName, you might have
a perfectly good YourName procedure and a perfectly good DoingWell proce-
dure, but when DoingWell is run, it says “Good job,” not “Good job, Ada.” If
your presentation seems to be forgetful, check your Dim statements to be sure
that you have declared all your variables at the beginning of the module.

Final Word on Debugging and Error Prevention

The final word on debugging and error prevention is to test what you have
done. If you can, test each procedure and/or button right away, so you can fix
any problems before you have too much code with too many problems to deal
with. But most important, test. You can’t fix a bug that you don’t find. And be-
lieve me, your students will find the bugs. Try clicking on buttons that you didn’t
want the students to click on, clicking on wrong answers, and typing unexpected
things. Your students will, and your presentation needs to be prepared for that.

Debugging and error prevention is more of an art form than a science. You
will develop your own techniques the more comfortable you get. But debugging
and error prevention is very important because you will have bugs (fewer if you
use the error prevention techniques), and you will need to correct them.

Conclusion

In this chapter you learned about ways to find bugs, how to fix bugs, and
how to prevent bugs. Now that you have learned a great many VBA tricks and
how to make your code work (or fix it when it doesn’t), you are ready to create
your own projects as well as create templates for your students’ projects. The
next chapter talks about the idea of creating templates that provide the frame-
work of a project for your students so they can fill in the content.

Exercises to Try 171

Exercises to Try

& The following code is not indented. What will happen if Ella
types 5?7 What will happen if anyone else types 5? What will hap-
pen if Ella types 10?7 What will happen if anyone else types 10?
Try to figure it out without running the code. Type it into the
VBA Editor and indent it properly; see if you come up with a dif-
ferent answer now that it is indented. Run the code to see if you
got the right answer.

Sub HowDoYouFeel ()

Dim score As Integer

Dim userName As String
userName = InputBox("What is your name?")
score = InputBox("On a scale of 1 to 10, how do you feel?")
If score > 5 Then

If score > 7 Then

If score > 9 Then

If userName = "Ella" Then
If score > 10 Then

MsgBox ("That'’s amazing")
Else

MsgBox ("That’'s perfect")
End If

ElseIf score < 6 Then
MsgBox ("That’s middling")
Else

MsgBox ("You’re perfect.")
End If

ElseIf score = 5 Then
MsgBox ("Are you middling?")

Else

MsgBox ("Are you above average?")
End If

ElseIf score = 5 Then

MsgBox ("Right in the middle")
Else

MsgBox ("That’s good")

End If

Else

MsgBox ("Not too good.")

End If

End Sub

172 Debugging Tips

U The following is the entire contents of a module. It contains four
bugs. Try to find all four by typing the code into the VBA Editor
and using the debugging and error prevention methods in this
chapter.

Sub YourName ()

userName = InputBox("What is your name?")
End Sub

End Sub

Sub BadProcedure ()

YorName

If userName = "Ella" Then
MsgBox ("Hello, big girl.")
ElseIf userName = "Ada"
MsgBox ("Hello, little girl.")
Else

MsgBox ("Hello, " & userName)
End If

End Sub

410

Templates

Introduction

In Chapter 9 you learned the last technical tricks presented in this book and
developed a bag of tricks to help you fix any problems that you might encounter.
Now you are ready to embark on using all the tricks you have learned to make
powerful interactive projects. However, your students might not be ready to
make their own powerful interactive projects. This chapter describes templates,
a tool you can use to do the technical and design work for your students, allow-
ing them to concentrate on the content. With a template, you can use all the VBA
features that you want, and your students can use all those VBA features without
even knowing how to open the VBA Editor. This chapter describes templates
and provides several examples, including a sophisticated example that asks the
user for information and adds a slide with that information.

Vocabulary

* Design Template (.pot) File e« Template

What Are Templates?

Previous chapters emphasized the use of multimedia projects that are cre-
ated by the educator. As you have read this book and worked through the exam-
ples, I hope you have gotten several ideas for projects that you want to create for
your students. A more powerful use of multimedia is to have students create their
own projects. Many studies have shown the positive educational impact of students

174 Templates

designing their own multimedia projects. See, for example, Liu and Hsiao (2001),
Liu and Rutledge (1997), or Lehrer, Erickson, and Connell (1994). While this can
be a powerful educational opportunity, it also can be impractical for a number of
reasons, not the least of which are that it is very time-consuming and that your stu-
dents might lack the technical skills to be successful.

Have no fear. Your students can still get many of the benefits of what you
have learned in this book without having to learn it all (or any of it) themselves.
That is where templates come in. If you design a project from scratch, you have
to decide on the appropriate media, appropriate kinds of information, and appro-
priate organization for your project. In addition, you have to develop the project
(including preparing the media, the PowerPoint slides, the VBA, etc.). A tem-
plate allows you to create some of these things for your students. Templates have
been used to facilitate multimedia creation by professional designers; see, for
example, O’Connor (1991). Agnew, Kellerman, and Meyer discusses the use of
templates with students: “The primary purpose of giving students a template for
their early projects is to allow them to concentrate most of their attention on
achieving academic objectives” (1996, p. 250).

Something as simple as a PowerPoint project about an animal can use a
template. You could tell your students that the presentation should contain four
slides: a title slide, a slide about the animal’s habitat with a picture of the animal,
a slide about what the animal eats, and a slide for citing resources. Those simple
instructions are a rudimentary template. You have designed the organization of
the project for the students.

However, you might go further and actually create the slides for them, giv-
ing your students directions about how to fill in the picture and the text. See Fig-
ure 10.1 for an example.

Your Animal's Habitat
= D W livg im
Put the name of your i
animal hera. Pu gl | NP
Pul your nam hare, el your ankmal| * (ovs B live in
hars A Wi oF Codd
clinatg?
Your Animal's Diat FReferences
* Dascnba whal you animal = Whare did you et your
£ary ifaemiakan T
= IE W Bertivo e, CaTRTeshe, * et latle sd @il vodew: o any
ar oMy vk wi you s,
= i bl Tl fidene, Bullor,
arnd pajge numisers af any
BOn Pou e,

Figure 10.1. Template for Animal Project

Saving Your Template 175

Although this is not a complex project, it might be a good one for second
graders, for example, who are first being introduced to PowerPoint. This project
does not require VBA or hyperlinks or animations or anything but the most basic
features of PowerPoint. For a class of students who are new to PowerPoint, by
getting them started you can save them hours of computer work and allow them
to concentrate on the content.

As projects become more complex, templates become more powerful. You
might want to introduce your students slowly to advanced features of
PowerPoint, or you might not want to introduce them to some features at all. But
you might want them to take full advantage of these features right away.

In Chapter 8 we saw examples of projects that easily can be turned into tem-
plates. You might want your students to write quizzes with all the features of
VBA that we discussed, but you might not want them to have to deal with VBA.
Using the examples from Chapter 8, you can set up a template with no questions
or a fake question and give your students instructions about how to add slides
and tie the buttons to the appropriate procedures. For the multiple-choice exam-
ples, they don’t need to change the VBA code at all.

As another template example, chapter 7 of Agnew, Kellerman, and Meyer
(1996) discusses a current events project. In this project, each student or group
of students creates a single slide about a current event. The slide contains a brief
paragraph about the event and a button for the citation and photograph of the
event. This project could be done as a template in which the teacher creates all
the parts of the project and the students simply add the pictures, citations, and
news summaries. In the end, all the slides are put together to form a class
collection of current events.

Many topics would work well in a template format. Projects that work es-
pecially well are ones in which you would like the students to include a fixed
body of information, and each student or group includes the same kind of infor-
mation about a different topic. For example, school clubs, U.S. presidents, coun-
tries in Europe, Spanish verbs, and state flags are all topics that lend themselves
well to templates.

Saving Your Template

When you create a template in PowerPoint, you can save it as a regular
PowerPoint presentation or as a Design Template. If you save it as a regular
PowerPoint presentation, you can have your students edit it, and you have to be
sure they choose “Save As” from the File menu to save it under a new name. If
they choose “Save,” it might overwrite the original file and lose the template.

If you save your template as a Design Template, when students dou-
ble-click on the file to open it, they will be taken to a new presentation that is
based on the template. When they save this file, they will be asked to choose a
new name and location for the presentation, so it will not overwrite the original
template.

176 Templates

To save your presentation as a Design Template, you will have to pay atten-
tion to the “Save as type.” If you choose, “Design Template” as your file type, it
will create a .pot file (see Figure 10.2).

seveds 212
Swwe i) My boouments o i o - o gy O
= o] e Do Sy
3| fdmne
M‘F My Mebuaes

ol
= Ty i-ﬁ.fn-HTmle
My Habwork i i
1 Fletes. el At [k !:l—\nhiull'.“,.il
gk B ceea £ 5 1RE; 5 robbinl]

PoweiPort 35 [7.pot)
P Paand ¥ TER S Presatdalins 0 gl)
Frpspandscion for R [*

L"|*|L

Pt Pl Wamia [* oo »

Figure 10.2. Choosing Design Template As the File Type

If you save a file as a Design Template, you can edit the template (rather than
a project based on the template) by opening the project from within PowerPoint.
That is, start PowerPoint and choose “Open” from the File menu to open it.

Once you have created a template, either as a .pot file or as a regular
PowerPoint presentation, you might want to set it to be “Read-only.” To do this,
quit out of PowerPoint and click once on the file to select it. If you are in Win-
dows, choose ‘“Properties” from the File menu and check the box labeled
“Read-only.” If you are on a Macintosh, choose “Get Info” from the File menu
and check the box labeled “Locked.” This will prevent the template from being
changed accidentally.

The Pick-A-Partner Template Project

In my Multimedia Design in the Classroom class, I encourage students to
form groups to complete their final projects. While this could be done in a num-
ber of ways (with or without technology), I also want to be sure my students are

The Pick-A-Partner Template Project 177

up to speed on the traditional features of PowerPoint at the beginning of class.
To that end, I have them fill in a PowerPoint template. The template gives my
students a chance to brush up on their traditional PowerPoint skills and view the
power of VBA without needing to know any VBA. In a less technically oriented
class, a similar project could be used for the same purposes. If you plan to use
PowerPoint for later projects, you can use a project like this one to introduce

your students to some of the features of PowerPoint.

This project is a twist on a common exercise to introduce PowerPoint in
which students fill in information about themselves. In my class, this informa-
tion is specifically related to what they might want to do with their final projects.
Figure 10.3 shows the slides for the template.

at’

mﬁmr Name
ETERM Fabe b Farisis
FesvrTaist Frajicy

Your Namag

LT
| vowr

Elrry

Persimal Infarmation
About Vour Mame
+ W kg Vam vy
+ Fasits
=% puarer. 1 Bikdbren. Priv
& Pavad i hatie s

=
il

Professiomnl Informarion
About Your Namse

= 4wl Lirval

= Rubprt Arvws Tasghy
el e

= Lmuil hddirm

=
L

Technicul Skills

» By vamr rahaio sl ikl aw
Py rwiade In B olna
Bod rugmpir
=1y prar sl Wy gt v Lo
PowsaPamisi il

R

Winrk Sty le
| et B Wk o b T s
vt e,
1wl Bk b e i
wy paianry mily Ty
= 1 ol liks b mwe bafre wlior
| Elaww | wihae | s, E

Project hilcas 1 You Want To Work
<Pt Bl]« Prmbins e] F “_I-'-'EI::::'.'
] i Bakimg "V @ {ommirEra,
:::.::: i :t:l'ﬂ: 5 ‘ i am rugrewien of el)
* Blere b n el & Mlewn i i wah
ﬁl‘*ﬂ . W WIE

Thank You for Learning
Abaul Me
Citnd L wok v ¥ www Prjeat]

Thank Vou for Lenrning
Alssut Me

Taliaps, We Cum Wik Topishen
fipesl | ik o Y o Famoen!

| Sorry, no oo che chew i
o v |0 i,

Figure 10.3. Slides for Pick-A-Partner Template

178 Templates

In the template, clouds represent instructions to the students who will be
filling in the content. The students are told to follow the instructions in the
clouds and delete the clouds when they are done. In Figure 10.3, the cloud in-
structions are only shown on the first slide, but I generally include them on all
slides.

Once all students fill in the content for their presentations, students rotate
around the room looking at each others’ presentations. When they reach the “Do
You Want To Work With Me?” slide, if they choose “Yes,” they are asked for a
name, an e-mail address, and a project idea.

Most of the project uses traditional PowerPoint features. The first seven
slides use features such as text, sound, pictures, buttons, and hyperlinks. VBA is
used in the first slide, the eighth slide, and the last slide to do the following:

* Some minor navigation tricks were achieved with VBA.
* Users are asked to input name, e-mail address, and project ideas.

* A new slide is created with the information the user inputs and a but-
ton to advance to the next slide.

* A button is used to navigate to a particular slide number (not a
named slide as is done with standard PowerPoint) so it can reach the
slide that was created with VBA.

Figure 10.4 shows the complete code for this project. Remember that, be-
cause this is a template, my students do not type any of this code. They simply
fill in the content in the first seven slides.

On the first slide, the secret button (the invisible button in the upper left cor-
ner) is tied to the procedure GoToPartners. This procedure goes to the elev-
enth slide. Normally, this could be done with a traditional hyperlink, but in this
case, the eleventh slide is going to be created with VBA. A traditional hyperlink
cannot link to a slide that does not yet exist. On the last slide, the “Look at Poten-
tial Partners Again” button also is tied to GoToPartners for the same reason.

The only other button that uses VBA is the “Yes” button on the eighth slide.
When users decide they want to work with you, they click on this button to initi-
ate a series of events. This button is tied to the WorkTogether procedure, which
controls this series of events.

b fges b e en b ke e 1om i g

- ®|

Fis medciiess 0 Frrisg
Pls arenEemili §F St ibm
Sl pt e
S Sockfogeckar i
Fomt e Lo | [dew
I T B o Tl 0 BB
hisBsckzperbecELad
-
Ay Rl
Wk TR | |
Bhl dnad LA el
socs = Fules
W i B e
sl = D | praege v Ty o e,
Title) ~ "Hamnh
B adpioams = = fbn deas = Pales [les dess = Fras
LT
[ES T
T T T
Fem docm Lo Bocloam
i = Tuldw
Wl e Mur auns
wrerEmail & [epwibos izcomwi i +"Trom poai Dl Smwwr™:
e LI - Y]
Ef asmrEmkid = " Than oome = Falss Tles acos v Toes

i Bmi # | e B Lo | T b e EE (deE SR8 Al T _
TakLai=" Taww=|
Ewh e
Wl o D | 1. | 7 |
P e

P T i
Foaciboss
Fxl B
W i T @ Tiwga B 1]
TR ERERR AT R, 0 (A ERA L LA R, 0P, COTRT AR | S
bk Pl
wh Swmwil
LI E L e THTT o]
Bi Saix
P bRy] [da Bl Soni Lkies Lr Sany)
Pl mihag+ L8 Thaged
L2 L] - rien, Bl Ldm i sdewi 2
SR R e R b E Pl fa R s Sarkend, FLLF, dA%EN, B4 .R3. EO-ATI
ALy EpihEpE . RIC LOWSE UL LN [FERanaes 10Ny
brrime = ppbak raiMeraELises
o Bepamldf il , Trpe & g Swmadl
cimimmreirrion = s Tres
Ll WHER
Wuul WP
<Pkl Foowicbot dchewlolay = padccamil
PRk ViRl * T
AN CREE
whime: Fopplolaor (M0 = BENAITE: B3 TFE)
Ll MiPLE Ly = mea iy
Cudl Wink
LU
B LB L W st B f T R |
ke ivebrecerzwt 1on B ides kdd isdaxcril. Reross eppiepma Teos
L b L T BT T TRERS L
Anmpdd i L] JTEnTress . Peankaage . Tt « sewriass @ T 08 sEbsnREtEE L kg woa pow, ©
« Fimpre i) o Tewd FF iesl ; Teed Rissor Tewt & "Emai b ™ & ol Email
B Fhgedd T Dk P TEr R

Jf wwer Ddew = ™" Tian Test Taxeoqd CRzi RN 4 TES igems eoTwoed™
EiFm Tl = Wil § TRIG[EVN & "0l pld 6 poaleji = § ey (ks
el WiTh
Tad Wik
[LR RTT T S TRk B
i Ham

Pl TPantpore | |
BT |l L, 0] 0 R b i o N R I RS
Ind Suh

Figure 10.4. Pick-A-Partner VBA Code

B e

180 Templates

The WorkTogether procedure calls all the procedures needed to make ev-
erything happen. When I took my first computer course, the instructor told us to
think about what we wanted our program to do and write a top-level procedure to
call other procedures to do it. Then, he suggested that you have finished something
important and you should go have a beer. That is what the WorkTogether pro-
cedure does. Go have a beer (if you are of legal drinking age, not driving, not
pregnant, etc.)! This procedure does all of the following:

e It asks the user to input a name, e-mail address, and project idea
(GetNameEmailIdea).

e It jumps to the tenth slide thanking the user for wanting to work with
you (GoToWorkTogether).

e It creates a new slide that contains the name, e-mail, address, and
project idea (AddWorkTogetherSlide),

* It saves the presentation so the newly added slide becomes part of
the presentation (Save),

The procedures YourName, YourEmail, and YourIdea are all variations
of the YourName procedure from earlier chapters. Although any version of
YourName will work, YourName and YourEmail use a version that forces the
user to type something. Because giving a project idea is optional, YourIdea
uses a version that does not require the user to type anything. The name, e-mail
address, and project idea are stored in the variables userName, userEmail, and
userIdea respectively. At the appropriate time, all three of these procedures
are called in succession by the GetNameEmailIdea procedure, which simply
calls each of these procedures in turn. However, GetNameEmailIdea is not
tied directly to any buttons because when users press the button to say they want
to be your partner, all the magic happens (coordinated by the WorkTogether
procedure), not just the input part.

The GoToWorkTogether procedure is simply a navigational procedure
that goes to the tenth slide because that is the slide that contains the message
“Thank You For Learning About Me. Perhaps We Can Work Together.” This,
by itself, could easily be done with traditional PowerPoint actions, but this is one
of many things that happens when a single button is pressed; that is, it is part of
all the things that WorkTogether does.

The procedure Save simply saves the presentation (as described in Chapter
8). This is simple, but it can’t be done by the user in Slide Show View without a
button and procedure.

The AddWorkTogetherSlide procedure is the real workhorse. It creates
a slide like that shown in Figure 10.5.

The Pick-A-Partner Template Project 181

Adla s inferested in
working with you.
» Enil: adas aalisdn

= Am it o ponder: 1 wand fo
ereaie o project aboai balierfile.

Figure 10.5. Example of Slide Created When Someone Has Chosen to Work with You

This slide will be inserted as the eleventh slide. The following line creates
the new slide:

ActivePresentation.Slides.Add index:=11, Layout:=ppLayoutText

The index:=11 ensures that the new slide will always be the eleventh
slide in the presentation. The Layout : =ppLayoutText makes it a standard
text slide with a title and one text area. Note that in earlier chapters parameters
for procedures and built-in functions were always contained in parentheses.
As a general rule, VBA expects something to be returned when the parame-
ters are in parentheses and nothing to be returned when they are not.
ActivePresentation.Slides.Add could return the slide object that it cre-
ates (and we could store that in a variable), but because we left off the parenthe-
ses it does not.

Next, we want to add the appropriate text to the slide: the user’s name in the
title area with a brief message; the user’s e-mail address in the text box; and the
user’s idea (if any) in the text box. The code that adds this follows.

With ActivePresentation.Slides (11)
.Shapes (1) .TextFrame.TextRange.Text = userName & _
" is interested in working with you."

.Shapes (2) .TextFrame.TextRange.Text = "Email: " & userEmail
With .Shapes(2) .TextFrame.TextRange
If userIdea = "" Then .Text = .Text & Chr$(13) & _
"No ideas entered" _
Else .Text = .Text & Chr$(13) & "An idea to ponder: " & userIdea
End With
End With

This uses a couple of Wwith blocks (see Chapter 6) and some fairly simple
text ideas (see also Chapter 6). The . Shapes (1) line sets the text in the title
area of the slide. The . Shapes (2) line puts the email address in the text area of
the slide. Then, the with block (through End with) adds the user’s idea to the
text area, or, if the user has no idea, it adds the text “No ideas entered.” It’s sim-
pler than it looks.

182 Templates

Finally, the AddNextS1ideButton procedure is called to add a button
to go to the next slide:

AddNextSlideButton (11)

The AddNextSlideButton procedure creates a button on any slide. We
call it with 11 so it will create a button on the eleventh slide and index will be
set to whatever number you call AddNextSlideButton with (see “Parame-
ters” in Chapter 8 for more information about parameters).

Sub AddNextSlideButton (index As Long)
Dim myShape As Shape
Set myShape = ActivePresentation.Slides(index) .Shapes. _
AddShape (msoShapeActionButtonForwardorNext, _
612#, 456#, 82.12, 82.12)
With myShape.ActionSettings (ppMouseClick)
.Action = ppActionNextSlide
.SoundEffect.Type = ppSoundNone
.AnimateAction = msoTrue
End With
With myShape
.Fill.ForeColor.SchemeColor = ppAccentl
.Fill.Visible = msoTrue
.Fill.Solid
.Line.ForeColor.RGB = RGB (255, 255, 255)
.Line.Visible = msoTrue
End With
End Sub

In this procedure, the Set line creates the button and sets myShape to point
to it. msoShapeActionButtonForwardorNext creates it as a button with a
forward-pointing arrow. The first with block sets the action (this is what makes
it go to the next slide) with the line .Action = ppActionNextSlide. The
other lines in the first with block aren’t really necessary but complete the action
features of the button.

The second with block sets colors (specifically Fill and Line colors). If
you are using the default color scheme, this entire With block is unnecessary,
but you can play with the parameters to see how the buttons that are created
change.

The last thing you should note about this procedure is that it was created us-
ing a macro. You can do some things by creating macros by going to the Tools
menu and choosing “Record Macro.” Whatever you do will be placed into a
VBA procedure. This is very good for setting up parameters, such as colors and
shapes and locations. However, a macro created in Edit View will not run prop-
erly in Slide Show View. Therefore, use the macro to guide you in creating
shapes and picking colors, but put those parameters into your own code that will
run in Slide Show View. This requires understanding some complicated con-
cepts, so don’t worry if you don’t get it right away.

Exercises to Try 183

Conclusion

In this chapter, you have learned the power of templates. Sometimes you
want your students to work on technical skills, but technology in the classroom
primarily is a tool for learning the curriculum. As a teacher, you need to balance
the use of technology with the needs of the curriculum. If the technology de-
mands are too great, the curriculum will be lost. Templates are the perfect solu-
tion for many tasks. If you want your students to use powerful technological
features, such as the VBA features of PowerPoint, but you don’t want them to
focus on the technology, you can create a template with all the features they
need, so they can focus on the curriculum but still get the advantage of the
powerful features.

You can use templates with your students with early projects while they are
still getting used to PowerPoint, or you can use templates for all projects. Tem-
plates do not need to include advanced features like VBA. Even the simplest
templates (like the Animal Project in Figure 10.1, page 174) can be used to focus
your students and limit the amount of technology and design they have to
understand.

Exercises to Try

U Create a simple presentation (possibly something like the Ani-
mal Project shown in Figure 10.1). Save it as a Design Template.
Quit PowerPoint and double-click on your template. Observe
what happens when you try to save the presentation that is
opened.

U Pick one of the projects from earlier chapters in this book (the
quizzes in Chapter 8 work well as templates) and create a tem-
plate for your students. Set it up to include all the VBA that is
needed, all the basic slides that are needed, and instructions for
your students so they know what to do with the project. For ex-
ample, if you choose a quiz format, you can create the title slide,
one question slide, and the feedback slide while giving instruc-
tions for how to add new slides and tie the right and wrong an-
swers to the procedures that you have already included.

Epilogue

We have concluded our journey through the scripting features of
PowerPoint. But I hope this journey has been only a beginning for you. The book
has focused on technical features of PowerPoint, but along the way you have
learned some interesting ways to apply the technology with your students be-
cause that is the most important thing. You might find it fun to sit around and
play with the technical features of PowerPoint, but the bottom line is how it will
improve your teaching and your students’ learning.

Start small. Create some simple presentations for your students. Don’t try
to conquer PowerPoint and VBA all at once. A few interactive quizzes won’t
revolutionize your classroom, but it is a beginning. As you conquer more and
more of the examples in this book, you might be ready to create your own exam-
ples, or you might want to find more examples. Check out the Web site that ac-
companies this book at http://www.lu.com. It contains more examples from the
author and the opportunity for you to post your own examples and find examples
that other readers have posted.

This book was written for scripters. You should be able to copy examples
directly from the book and make minor modifications to insert your own con-
tent. Many of you will be satisfied to remain a scripter. Just using what is in the
book and on the Web site should provide you with a rich set of examples that you
can apply to many situations. However, some of you will want more. You will
want to create things unlike anything in this book. You will want to become pro-
grammers. While there currently are no books geared to educational uses of
PowerPoint and VBA, you might be ready for a book that focuses on VBA. Look
in the References section for McFedries (1999) or Boctor (1999) or, better yet,
go to your local bookstore and browse through a few books. Learning to pro-
gram is a very personal experience, and a book that one person likes won’t make
any sense to another. Find one with the right balance of explanations and exam-
ples and details that work for you.

As an educator, your focus has to be on the learning of your students. The
most important next step is to expand how you can apply multimedia in your
classroom. You can do this by creating more and more sophisticated presenta-
tions for your students or by expanding your students’ role in multimedia pro-
duction. Chapters 1 and 10 introduced this topic briefly, and you can find more
information in Ivers and Barron (2002) and Agnew, Kellerman, and Meyer
(1996). If you want to make media production a focal point of your classroom,
you might want to check out Counts (2004). If your focus is more on your own
media production in a school setting or outside of the schools, you might be in-
terested in Alessi and Trollip (2001), which will take you in the direction of
becoming a professional multimedia designer.

186 Epilogue

Using multimedia that you create and having your students create multime-
dia can have a powerful impact on the curriculum, and it can help students un-
derstand media and gain a level of media literacy. For more information about
media literacy, look for the Alliance for a Media Literate America at
http://www.nmec.org/.

Your journey is just beginning. You have the power to improve your stu-
dents’ learning. You have the power to use PowerPoint to engage and interact
with your students. Technology is not always easy to use, but if you have come
this far, you have mastered another piece of powerful technology to help your
students learn. Don’t stop here. Create exciting interactive presentations. Have
your students create exciting interactive presentations. Share your successes, get
help with your frustrations, and keep in touch at our Web site, www.lu.com.

References

Agnew, P. W., Kellerman, A. S., & Meyer, J. M. (1996). Multimedia in the
classroom. Boston: Allyn and Bacon.

Alessi, S. M. & Trollip, S. R. (2001). Multimedia for learning: Methods and de-
velopment (3rd ed.). Boston: Allyn and Bacon.

Alliance for a Media Literate America. (n.d.). Available: http://www.nmec.org/
(accessed January 26, 2004).

Boctor, D. (1999). Microsoft Office 2000 Visual Basic for Applications funda-
mentals. Redmond, WA: Microsoft Press.

Counts, E. L., Jr. (2004). Multimedia design and production for students and
teachers. Boston: Pearson Education.

Educational Multimedia Fair Use Guidelines Development Committee (1996,
July 17). Fair use guidelines for educational multimedia. Available:
http://www.utsystem.edu/ogc/intellectualproperty/ccmcguid.htm (accessed
January 26, 2004).

Goldberg, R. (1996). The multimedia producers bible. Chicago: IDG Books
Worldwide.

International Society for Technology in Education. (2001). Educational Com-
puting and Technology Standards for Technology Facilitation Initial
Endorsement. Available: http://cnets.iste.org/ncate/n_fac-stands.html
(accessed January 26, 2004).

Ivers, K. S. & Barron, A. E. (2002). Multimedia projects in education: Design-
ing, producing, and assessing (2nd ed.). Westport, CT: Libraries
Unlimited.

Lehrer, R., Erickson, J., & Connell, T. (1994). Learning by designing
hypermedia documents. Computers in the Schools 10(1), 227-254.

Liu, M. & Hsiao, Y. (2001). Middle school students as multimedia designers: A
project-based learning approach. Paper presented at the National Educa-
tional Computing Conference, Chicago, July 25-27, 2001.

Liu, M. & Rutledge, K. (1997). The effect of a “learner as multimedia designer”
environment on at-risk high school students’ motivation and learning of de-
sign knowledge. Journal of Educational Computing 16(2), 145-177.

Male, M. (2003). Technology for inclusion: Meeting the special needs of all stu-
dents (4th ed.). Boston: Allyn and Bacon.

188 References

McFedries, P. (1999). VBA for Microsoft Office 2000 unleashed. Indianapolis,
IN: Sams Publishing.

O’Connor, R. J. (1991). Facilitating CAI development via an authoring tem-
plate. Computers in the Schools 8(1/2/3), 249-250.

Pics4Learning copyright-friendly images for education. (n.d.) Available:
http://www.pics4learning.com/ (accessed January 26, 2004).

Rindsberg, S. (2003). PowerPoint FAQ. Available: http://www.rdpslides.com/
pptfaq/ (accessed January 26, 2004).

Robinette, M. (1995). Mac multimedia for the teacher. Braintree, MA: IDG
Books Worldwide.

Smithsonian National Museum of American History. (n.d.). First computer bug.
Available: http://americanhistory.si.edu/csr/comphist/objects/bug.htm
(accessed January 26, 2004).

Action buttons, 13
Action settings, 2627
Actions
for another slide, 75
for current slide, 74-75
ActivePresentation, 3940
ActivePresentation.Saved,
108, 128
ActivePresentation.Slides,
75
ActivePresentation.Slides.
Add, 181
ActivePresentation.
SlideShowWindow.View.
Slide, 74
Adding objects, 75, 157
Adding slides, 102
Adding text. See Manipulating text,
adding text
AddsShape, 75, 156-161
Alliance for a Media Literate America,
186
Ampersand (&), 54, 80
Animation, 29-30
Arguments. See Parameters
Arrays, 134-138, 146-148
Assignment operator, 50-51, 158
equal sign, 50-51
Set, 158
Assignments for students, 8—10. See
also Templates
Audio. See Sounds.
Audio format (.au), 18
Audio Interchange File Format (.aif or

.aiff), 18
Authoring, xi—xii
AutoShapes

action settings for, 27

Boolean. See Variables, type, Boolean
Brainstorming, 3, 4, 9
Bugs, 150, 153—155, 168—170. See also
Debugging; Errors
common 168-170

Index

duplicate variables, 169
duplicate, procedures, 169
extra End Sub, 169
forgotten Dim, 170
multiple modules, 168
Buttons, 25-29, 43-45, 46. See also
Hyperlinks
action settings for, 26, 27-28, 4445,
46

adding, 25-29, 44, 107

adding text to, 27-28, 45, 46, 48

changing attributes of, 46, 108

changing color of, 46, 109, 112

changing size of, 26, 46

custom, 27

drawing, 25-26, 44

editing text in, 46

finding text in, 138—142. See also

Manipulating text

hyperlinks, 26-27

icons for, 25

recording sounds in, 28-29

tying scripts to, 43—45, 46, 59—-60

Capitalization, 100-101, 162—-164
in Dim statements, 163—164
procedure names, 162—163
student answers, 100—101
in Sub statements, 163—-164
variable names, 162163
VBA stuff, 163-164
Chr$ (13), 80, 83, 86
Classes, 35-37
Clip art. See Pictures, inserting; Media,
pictures
tying scripts to, 45
Clip organizer, 16, 20. See also Pictures;
Sounds
Comment character ('), 64, 160
Commenting out. See Debugging,
commenting out
Comments, 64, 160-161
Compile error. See Errors, compile
Compiling, 161

190 Index

Computerese, 35
Concatenation, 54
Conditionals, 5658, 118-120, 164—166
Constants, 66—67

color, 77, 84

in MsgBox, 6667

shape, 76
Continuing lines. See Underscore
Copyright, 17, 18
Creating shapes. See Shapes, adding
Cursor

arrow, 24

hand, 24

I bar, 27

plus sign, 25

text, 27
Custom animation, 71-72, 126, 127

Data structures, 134
DDD-E Model, 3-5
decide, 34
design, 4
develop, 4
evaluate, 34
Debugger, 162
Debugging, 150, 153-172
commenting out, 160—-161
compiling, 161
with MsgBox, 158-159
Decide. See DDD-E Model
Declaring. See Dim
Delay. See Timing
Deleting slides, 108
Design, 1, 2—11. See also DDD-E
Model
Design Template (.pot) File. See File
types, Design Template (.pot)
Develop. See DDD-E Model
Dialog box
Action Settings, 26, 28, 29, 44-45,
46
Custom Animation, 71, 72
Do you like chocolate?, 67
enable macros, 38
Hello, 42
Insert Hyperlink, 22-23
Macro Security, 38-39

Password. See Dialog box, Project
Properties
Project Properties, 47
Record Sound, 19
Save As, 30-31, 176
Set Up Show, 29-30
Sound Object, 21
Dim, 51-53, 135, 168, 169, 170
Dirty, 128, 129-130
DoEvents, 126
Dot, 36. 79, 166
Drawing toolbar, 15, 45
Duplicates, 168—169. See also Bugs,
common
modules, 168
procedures, 169
variables, 169

Edit View, 13, 24, 27, 30, 45, 132, 133,
158, 182
Elements of an array. See Arrays
Embedded elements, 15, 18. See also
Sounds, inserting; Pictures,
inserting
Empty string, 56, 82
End Sub, 42,162
Equal sign (=). See Assignment operator
Error messages, 154, 155, 156, 157
Errors. See Bugs; Debugging
compile, 156-158, 161
preventing, 159
capitalization, 162—164. See also
Capitalization
indenting, 164—166. See also
Indenting
red, 155-158, 161
run time, 161
testing for, 154155
Escape key, 29, 30, 45, 126
Evaluate. See also DDD-E Model,
Evaluation
Evaluation, 4-5
formative, 4
summative, 4-5
Examples
Animal Project template, 174
interactive story, 80-81, 150
mystery, 85-89

Index 191

pool of questions, 146—150
asking how many questions, 149
keeping score, 149—150
quizzes
multiple-choice with multiple
tries, 95-99
multiple-choice with
scorekeeping, 93
multiple-choice with stars for
feedback, 70
printing results, 102—108
printing results with arrays,
139-142
random problems, 145-146
random problems with multiple
tries, 146
short-answer, 99—-100
simple multiple-choice, 55
Pick-A-Partner, 176182
random problems, 144-145
signs of spring, 81-82
tutorial and quiz, 109-115
hiding the quiz button, 113-115
menu with feedback, 109—112
on the Web site, 185, 186

Fair use, 17, 18
Fair Use Guidelines for Educational
Multimedia, 17
Feedback, 49, 54-55, 89, 92. See also
Procedures, Feedback;
Reporting scores
File types
Design Template (.pot), 175-176,
183
PowerPoint Presentation (.ppt), 175
PowerPoint Show (.pps), 30-31, 32
Flowchart, 7-8
Force quit, 124
Formative evaluation. See Evaluation,
formative

GetStarted, See Procedures,
GetStarted

Going to slides. See Moving from slide
to slide

GraphicConverter, 16

Groups, 10

Hawaii, xii

Help, 168

Hiding objects, 68, 71, 75, 112,
113-115, 128

Hyperlinks, 13, 21-27, 34, 64-65
files, 24-25
Web pages, 24-25, 27
within a presentation, 21-22, 26
Hyperspace, lost in, 5, 109
Hypertext 21-25, 45. See also
Hyperlinks

Icon, sound, 28

Icons, button. See Buttons, icons for

If. See Conditional

nested, 119-120, 131, 165-166

Indenting, 120, 131, 164—166

Infinite loops. See Loops, infinite

Inheritance, 36

Initialize. See Procedures,
Initialize

Initializing, 68—70

Input, 49

InputBox, 50-51. See also
Procedures, Question3;
Procedures, YourName;
Quizzes, short-answer

Int, 143-144. See also Random
numbers

Integer. See Variables, type, Integer

Interactivity, xi, xii, 2, 13, 24, 34

International Society for Technology in
Education, xi—xii

Keeping score, 93-99
multiple tries, 95
Kiosk mode, 5, 13, 29-30, 32, 47, 155

Landmarks, 109

LCase, 100-101

Learning environments, 8
constructivist, 8
student-centered, 8

Learning styles, 2

Link sounds with file size greater than.

See PowerPoint, settings
Linked files, 15, 25
Lock project for viewing, 47

192 Index

Long. See Variables, type, Long

Loops, 5657, 120-124
Do, 122-123
Infinite, 124, 126
For Next, 120, 123

stopping condition, 120124
While, 56-57, 120-122, 124

Lowercase, 100-101
LTrim, 101

Macro, running. See Procedures,

running
Macro virus protection, 37-38

Manipulating text, 68, 77-78, 79-89

adding text, 80
bold, 83
characters, 83
color, 82-83, 84
copy, 84-85
count, 85

cut, 84-85
delete, 84-85
italic, 83

length, 85

name of font, 84
paragraphs, 83
paste, 8485
range, 83

size, 84, 107, 142
underline, 83
words, 83

Maximum number of undos. See

PowerPoint, settings

Media, xii, 3, 10, 13

clip art, 16

pictures, 16

sounds, 18-21, 28-29

spoken words, 2, 19

videos, 20
Media literacy, 10, 186
Menu. See Organization, menu
Metaphor, 1,3,4,7,9
Methods, 35-37
Modules

deleting, 43

inserting, 42

multiple, 43, 168

window, 43

Motivation. See Multimedia, benefits
Movies. See Video
Moving from slide to slide, 64—66, 68,
92,134
MsgBox, 66—68, 124
for debugging, 158-159
msoFalse, 68
msoTrue, 68
Multimedia
benefits, 1,2, 8,9, 173-174,
185-186
definition, 2
Musical Instrument Digital Interface
(-midi or .mid), 20

Names
objects, 73-74, 130-132
slides, 66, 133-134
sounds, 19, 28-29
Navigation, 7, 64—66, 68. See also
Organization; Moving from slide
to slide
controlling. See Kiosk mode
Nested I£. See I£, nested
New paragraph. See Chrs (13)
Newsprint, 7
Normal View. See Edit View
Numbers
of objects, 71-73, 112
random. See Random numbers
of slides, 65-66, 74-75, 106, 133,
136

Object-oriented programming, 34-37
Objects, 35-37
adding. See Adding objects
referencing by name, 73-74,
130-131, 133
referencing by number, 71-73
OOP. See Object-oriented programming
Options. See PowerPoint, settings
Organization, 1, 3, 4, 5-6
linear, 5, 31, 34, 109
menu, 5-6, 22, 24, 34, 109-115
hierarchical, 5
templates for, 8, 174—175. See also
Templates

Index 193

Parameters, 35, 124-125, 138, 161,
166-167, 168, 181, 182
default values, 167
in parentheses, 181
MsgBox, 66—67
required, 167
Password, 47, 48
Paste keyboard shortcut, 25
Photoshop, 16
Pick-A-Partner Project. See Examples,
Pick-A-Partner
Pictures
formats, 15-16
.bmp, 15
.gif, 15
Jpg, 15
Aif, 15
inserting, 1518
clip art, 15, 16—17
copying and pasting, 15, 17-18
drawing tools, 15
from file, 15, 16
tying scripts to, 45
Placeholder, 81-82
Planning, 1, 3, 7
Pool of questions, 146—150
Poster board, 7
PowerPoint
settings
Allow fast saves, 14
Browsed at a kiosk, 29-30
Link sounds with file size greater
than, 15, 20
Lock project for viewing, 47
Maximum number of undos, 15
traditional features, xii, 13-32,
148-149, 178
versions, 14, 34, 35, 51, 71-72, 107,
168
PowerPoint Show (.pps). See File types,
PowerPoint Show (.pps)
Preferences. See PowerPoint, settings
Printable page, 106-108
Printing, 106-108
Procedures
AddAnimals, 81
AddHello, 80
AddNextSlideButton, 179, 182

AddPlants, 81

AddRectangle, 75

AddStar, 156, 157, 158, 159, 160

AddWorkTogetherSlide, 179

AnswerlAbrahamLincoln, 103

AnswerlGeorgeWashington,
103

Answer2Four, 104

Answer2Two, 104

BadProcdure

BrickPig, 80-81

calling, 60, 180

Chocolate, 67

Doing, 125

DoingPoorly, 55, 93, 96, 98, 103,
111, 144, 147

DoingWell, 54, 55, 60, 93, 96, 98,
103, 111, 144, 147

DoWeShowQuizButton, 114

EyeColor, 87

Feedback, 93, 96, 98

GetNameEmailIdea, 179

GetObjectName, 130, 132

GetSlideName, 133

GetStarted, 69, 70, 78, 87, 93,
95,97,103, 111, 114, 144,
147

GoToPartners, 179

GoToWorkTogether, 179

Guess, 87

HairColor, 87

HelloWaitGoodbye, 126

HideQuizButton, 114

HowDoYouFeel, 171

HowMany, 149

HowManyPlanets, 121

Initialize, 69,70, 78, 93, 95,
97,103, 111, 114, 135, 137,
139, 144, 147

JumpToMenu, 111, 114

MakeNotDirty, 128

names, 162163, 169

NestedIf, 165

PrintablePage, 104-105,
141-142

PrintResults, 105

Question, 58

Question3, 99, 102, 104, 140-141

194 Index

Procedures (cont.)

Quit, 128

QuitAndSave, 128

QuitOK, 68

RandomNext, 147

RandomQuestion, 144, 145, 146

ReturnToMenuFromPartl, 111,
114

ReturnToMenuFromPart2, 111,
114

ReturnToMenuFromPart3, 111,
114

RightAnswer, 78, 92,93, 96, 111,
136, 147, 150

RightAnswerButton, 139

RightAnswerl, 98

RightAnswer2, 98

RightAnswerTwo, 70

RightAnswer3, 104

RightAnswerThree, 70

running, 42, 4345, 46, 49, 59-60,
180

running in Edit View, 132, 133

Save, 128,179

saving, 44

SayHello, 42

SetObjectName, 130-131, 132

SetSlideName, 133

ShowQuizButton, 114

StartAgain, 105, 129

tying to a button, 4345, 46

Wait, 126, 127

WhatsMyGrade, 119

WhichButton, 138

WorkTogether, 129, 179

WrongAnswer, 92,93, 96, 111,
136, 147, 150

WrongAnswerButton, 139

WrongAnswerl, 98

WrongAnswer2, 98

WrongAnswer3, 104

YourEmail, 179

YourIdea, 179

YourName, 50, 53, 54, 55, 56, 57,
60, 70, 78, 87, 92, 93, 95, 98,
103, 111, 114, 122, 147, 172,
179

YourNameWithPraise, 60, 65

Programmer, xi, 34, 52, 91, 134, 135,
185
Project window, 41-42, 43, 168
Projects, students, 7, 8-10
brainstorming, 9
groups, 10
idea, 9
information, selecting, 9
media, 10
metaphor, 7, 9
organization, 9
planning, 7
reflection, 10
research, 9
templates, 8, 10
Properties, 36-37, 40
object, 68
shape, 77, 7677
text. See Manipulating text
Properties window, 4142

Questions. See Quizzes
Quitting, 67-68, 129
Quiz button, 113-115
Quizzes, xii, 26-27, 32, 34, 47, 48,
54-55,58-59, 61,91-116
multiple-choice, 32, 34, 48, 54-55,
92,136-137, 138-142, 151
short-answer, 58-59, 61, 99-102,
116, 138, 151

Random numbers, 143—-150
Randomize, 143-144. See also
Random numbers
Record Macro, 182
ReDim, 136-138
Referencing objects
by name. See Objects, referencing by
name
by number. See Objects, referencing
by number
Reflection, 10
Reporting scores, 92-99
percent scores, 94
printing results, 102—108, 139-142
right and wrong answers, 94
right answers, 94
Researching, 3, 4

Index 195

ResetSlide, 167

RGB, 75-77, 84

Right click, 18

Rnd, 143-144. See also Random
numbers

Round, 94

RTrim, 101

Run time error. See Errors, run time

Saving, 127-130
Saving as a Design Template. See File
types, Design Template (.pot)
Saving as a PowerPoint Show. See File
types, PowerPoint Show
Scope. See Variables, scope
Score. See Keeping score
Scripter, xi, 34, 37, 52, 55, 58-59, 91,
106, 134, 142, 185
Scripting, xi
Scripts. See Procedures
Security
macro. See Macro virus protection
password protection, 47, 48
Settings, PowerPoint. See PowerPoint,
settings
Shape, 37,76
Shapes
adding, 75, 157
adding text to, 77-78
changing color of, 75-77. See also
Buttons, changing color of
drawing, 45
manipulating text in, 77-78, 79-89.
See also Manipulating text
multiple, 158
tying scripts to, 45
types, 76
Shift-Tab, 164
Showing objects, 68, 71, 75, 112,
113-115, 128
Shuffling the deck. See Randomize
Single. See Variables, type, single
Slide Show View, 13, 24, 27, 30, 44,
124,132, 158, 162, 182
Slide types
blank, 71

bulleted list, 71, 73, 80, 107
title only, 82
two-column text, 81-82, 107
Slides, 37
Slides, names of. See Names, slides
Sounds, 18-21
for buttons, 28-29
inserting, 18-21
CD, 18
clip art, 20
from file, 29-21, 28
linked vs. embedded, 19-21
recorded, 19, 28-29
names of, 19, 28-29
types, 18, 20
Spacing, 100-101
Spelling, 100-102
Stopping condition, See Loops, stopping
condition
Storyboard, 3, 4, 7-8
String. See Variables, type, String;
Text
Summative evaluation. See Evaluation,
summative

Tab key, 164.
Templates, 8, 137-138, 151, 173-183
Testing, 3, 154-155, 170
Tests. See Quizzes
Text 27-28, 4546, 68, 77-89. See also
Manipulating text
action settings for, 27
in buttons, 27-28, 45, 46
concatenation of, 54
manipulating, 68, 77-78, 79—89
parts of, 82—85
tying scripts to, 45
TextRange, 82-85
Timing, 125-127
Trim, 100-101, 131
Tutorial, 32, 109-116
Type. See Variables, type

Underscore, 50, 156, 165
Until, 122-123
URL, 24-25, 27

196 Index

Variables, 49, 50-54, 58, 94, 96-97,
98-99, 100, 113, 118-120, 134
arrays. See Arrays
declaring, 51-53, 135, 136-137
names, 58
scope, 51, 52
type, 51, 53-54
Boolean, 54, 56
Integer, 54
Long, 54
Object, 54
Shape, 54
Single, 54
String, 53-54
VBA, See Visual Basic for Applications
VBA Editor, 41, 53, 166—168
Video, 20

Viewer, PowerPoint, 35

Views. See Edit View; Slide Show View

Viruses, 37

Visible property, 37, 68. See also
Hiding objects; Showing objects

Visual Basic Editor. See VBA Editor

Visual Basic for Applications, xi, 33-39

Waveform Audio (.wav), 20
Web address. See URL
Wend, 57, 121

While, See Loops, While
With Block, 79

Words, spoken, 18, 28

YourName. See Procedures,
YourName

About the Author

DAVID M. MARCOVITZ is Assistant Professor in the Education Depart-
ment and Coordinator of Graduate Programs in Educational Technology. He re-
ceived his Ph.D. in Educational Technology from the University of Illinois,
Urbana-Champaign, where he studied support for technology in elementary
schools. He’s taught computer applications and computer programming at the
high school level, and he has worked as a technology specialist in a high school.
Prior to teaching at Loyola College, he taught in the Educational Technology
Program at Florida Atlantic University. He was hired by Loyola College in 1997
to develop a Masters program in Educational Technology, a program he coordi-
nates and for which he teaches many of the classes, including Multimedia De-
sign in the Classroom. He is the author of several articles about educational
technology.

